The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Berberich, Eric; Eigenwillig, Arno; Hemmer, Michael; Hert, Susan; Kettner, Lutz; Mehlhorn, Kurt; Reichel, Joachim; Schmitt, Susanne; Schömer, Elmar; Wolpert, Nicola. EXACUS: efficient and exact algorithms for curves and surfaces. Algorithms—ESA 2005, 155--166, Lecture Notes in Comput. Sci., 3669, Springer, Berlin, 2005. MR2257935
  2. Brieskorn, Egbert; Knörrer, Horst. Plane algebraic curves.Translated from the German by John Stillwell.Birkhäuser Verlag, Basel, 1986. vi+721 pp. ISBN: 3-7643-1769-8 MR0886476 (88a:14001)
  3. Erdös, Paul. On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61, (1939). 974--976. MR0000311 (1,52a)
  4. Falconer. K. Fractal Geometry - Mathematical Foundations and Applications, Wiley, New York, 1990. \MR{1102677}
  5. Hutchinson, John E. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713--747. MR0625600 (82h:49026)
  6. Lalley, Steven P. Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution. J. London Math. Soc. (2) 57 (1998), no. 3, 629--654. MR1659849 (99k:11124)
  7. Mauldin, R. Daniel; Simon, Károly. The equivalence of some Bernoulli convolutions to Lebesgue measure. Proc. Amer. Math. Soc. 126 (1998), no. 9, 2733--2736. MR1458276 (98i:26009)
  8. Ngai, Sze-Man; Wang, Yang. Self-similar measures associated to IFS with non-uniform contraction ratios. Asian J. Math. 9 (2005), no. 2, 227--244. MR2176605 (2006m:26014)
  9. Neunhäuserer, J. Properties of some overlapping self-similar and some self-affine measures, Acta Mathematica Hungarica vol. 93 1-2, 143-161, 2001. \MR{1924256}
  10. Neunhäuserer, J. A construction of singular overlapping asymmetric self-similar measures. Acta Math. Hungar. 113 (2006), no. 4, 333--343. MR2286266 (2008g:28008)
  11. Neunhäuserer, Jörg. A general result on absolute continuity of non-uniform self-similar measures on the real line. Fractals 16 (2008), no. 4, 299--304. MR2468886 (2009k:28025)
  12. Nicol, Matthew; Sidorov, Nikita; Broomhead, David. On the fine structure of stationary measures in systems which contract-on-average. J. Theoret. Probab. 15 (2002), no. 3, 715--730. MR1922444 (2003i:28008)
  13. Peres, Yuval; Schlag, Wilhelm; Solomyak, Boris. Sixty years of Bernoulli convolutions. Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), 39--65, Progr. Probab., 46, Birkhäuser, Basel, 2000. MR1785620 (2001m:42020)
  14. Peres, Yuval; Solomyak, Boris. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996), no. 2, 231--239. MR1386842 (97f:28006)
  15. Pesin, Yakov B. Dimension theory in dynamical systems.Contemporary views and applications.Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. xii+304 pp. ISBN: 0-226-66221-7; 0-226-66222-5 MR1489237 (99b:58003)
  16. Shmerkin, Pablo; Solomyak, Boris. Zeros of $\{-1,0,1\}$ power series and connectedness loci for self-affine sets. Experiment. Math. 15 (2006), no. 4, 499--511. MR2293600 (2007k:30003)
  17. Solomyak, Boris. On the random series $\sum\pm\lambda\sp n$ (an Erdős problem). Ann. of Math. (2) 142 (1995), no. 3, 611--625. MR1356783 (97d:11125)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.