A convergent series representation for the density of the supremum of a stable process

Friedrich Hubalek (Vienna University of Technology)
Alexey Kuznetsov (York University)


We study the density of the supremum of a strictly stable Levy process. We prove that for almost all values of the index $\alpha$ - except for a dense set of Lebesgue measure zero - the asymptotic series which were obtained in Kuznetsov (2010) "On extrema of stable processes" are in fact absolutely convergent series representations for the density of the supremum.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 84-95

Publication Date: January 23, 2011

DOI: 10.1214/ECP.v16-1601


  1. E.W. Barnes. The genesis of the double gamma function. Proc. London Math. Soc., 31:358--381., 1899. Math. Review number not available.
  2. E.W. Barnes. The theory of the double gamma function. Phil. Trans. Royal Soc. London (A), 196:265--387., 1901. Math. Review number not available.
  3. C. Baxa and J. Schoißengeier. Calculation of improper integrals using {$(n\alpha)$}-sequences. Monatsh. Math., 135(4):265--277, 2002. Math. Review 1914805
  4. V. Bernyk, R.C. Dalang, and G. Peskir. The law of the supremum of a stable Levy process with no negative jumps. Ann. Probab., 36(5):1777--1789, 2008. Math. Review 2440923
  5. J. Bertoin. Levy processes , volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996. Math. Review 1406564
  6. N.H. Bingham. Fluctuation theory in continuous time. Advances in Appl. Probability, 7(4):705--766, 1975. Math. Review 0386027
  7. R.A. Doney. On Wiener-Hopf factorisation and the distribution of extrema for certain stable processes. Ann. Probab., 15(4):1352--1362, 1987. Math. Review 0905336
  8. R.A. Doney. A note on the supremum of a stable process. Stochastics, 80(2-3):151--155, 2008. Math. Review 2402160
  9. R.A. Doney and M.S. Savov. The asymptotic behavior of densities related to the supremum of a stable process. Ann. Probab., 38(1):316--326, 2010. Math. Review 2599201
  10. I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, seventh edition, 2007. Math. Review 2360010
  11. G.H. Hardy and J.E. Littlewood. Notes on the theory of series. XXIV. A curious power-series. Proc. Cambridge Philos. Soc., 42:85--90, 1946. Math. Review 0015529
  12. A.Y. Khinchin. Continued fractions. The University of Chicago Press, Chicago, Ill.-London, 1964. Math. Review 0161833
  13. A. Kuznetsov. On extrema of stable processes. to appear in Ann. Probab. , 2010. Math. Review number not available.
  14. A.E. Kyprianou. Introductory lectures on fluctuations of Levy processes with applications. Universitext. Springer-Verlag, Berlin, 2006. Math. Review 2250061
  15. J.C. Oxtoby. Measure and category. A survey of the analogies between topological and measure spaces. Volume 2 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1980. Math. Review 0584443
  16. P.Patie. A few remarks on the supremum of stable processes. Statist. Probab. Lett. , 79(8):1125--1128, 2009. Math. Review 2510779
  17. V.M. Zolotarev. Mellin-Stieltjes transformations in probability theory. Teor. Veroyatnost. i Primenen. , 2:444--469, 1957. Math. Review 0108843
  18. V.M. Zolotarev. One-dimensional stable distributions. Volume 65 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1986. Math. Review 0854867

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.