A note on new classes of infinitely divisible distributions on $\mathbb{R}^d$

Makoto Maejima (Keio University)
Genta Nakahara (Keio University)


This paper introduces and studies a family of new classes of infinitely divisible distributions on $\mathbb{R}^d$ with two parameters. Depending on parameters, these classes connect the Goldie-Steutel-Bondesson class and the class of generalized type $G$ distributions, connect the Thorin class and the class $M$, connect the class $M$ and the class of generalized type $G$ distributions. These classes are characterized by stochastic integral representations with respect to Lévy processes.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 358-371

Publication Date: August 28, 2009

DOI: 10.1214/ECP.v14-1487


  1. T. Aoyama, M. Maejima and J. Rosi'nski. A subclass of type $G$ selfdecomposable distributions. J. Theor. Prob. 21 (2008), 14-34. Math.Review MR2384471
  2. O.E. Barndorff-Nielsen, M. Maejima and K. Sato. Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli 12 (2006), 1-33. Math.Review MR2202318
  3. O.E. Barndorff-Nielsen, J. Rosi'nski and S. Thorbjo rnsen. General $\Upsilon$ transformations. ALEA Lat. Am. J. Probab. MAth. Staist. 4 (2008), 131-165. Math.Review MR2421179
  4. W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (1966), John Wiley & Sons Math.Review MR0210154
  5. M. Maejima, M. Matsui and M. Suzuki. Classes of infinitely divisible distributions on ${\mathbb R} ^d$ related to the class of selfdecomposable distributions. To appear in Tokyo J. Math.
  6. K. Sato. L'evy Processes and Infinitely Divisible Distributions. Cambridge University Press. Math.Review MR1739520
  7. K. Sato. Stochastic integrals in additive processes and application to semi-L'evy processes. Osaka J. Math. 41 (2004), 211-236. Math.Review MR2040073
  8. K. Sato. Additive processes and stochastic integrals. Illinois J. Math. 50 (2006), 825-851. Math.Review MR2247848
  9. K. Sato. Two families of improper stochastic integrals with respect to L'evy processes. ALEA Lat. Am. J. Probab. MAth. Staist. 1 (2006), 47-87. Math.Review MR2235174

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.