A non-commutative sewing lemma

Denis Feyel (Université Evry)
Arnaud de La Pradelle (Universite Paris VI)
Gabriel Mokobodzki (Universite Paris VI)


A non-commutative version of the sewing lemma is proved, with some applications

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 24-34

Publication Date: October 31, 2007

DOI: 10.1214/ECP.v13-1345


  1. D. Feyel, A. de La Pradelle. Curvilinear Integrals along Enriched Paths. Electronic J. of Probability 34, 860-892 (2006) Review Number not available.
  2. M. Gubinelli. Controling Rough Paths. J. Funct. Analysis216, 86-140 (2004) MR2091358 (2005k:60169)
  3. T.J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), no. 2, 215--310. MR1654527 (2000c:60089)
  4. T.J. Lyons, Z. M. Qian. Calculus for multiplicative functionals, ItÙ's formula and differential equations. ItÙ's stochastic calculus and probability theory, 233--250, Springer, Tokyo, (1996). MR1439528 (98k:60111)
  5. T.J. Lyons, Z.M. Qian. System control and rough paths. Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, Oxford, (2002). ISBN: 0-19-850648-1 MR2036784 (2005f:93001)
  6. L. Schwartz. La convergence de la sÈrie de Picard pour les EDS. SÈminaire prob. Strasbourg,t.23, 343-354 (1989). Review Number not available.
  7. L.C. Young. An inequality of H"older type, connected with Stieltjes integration. Acta Math. 67, 251-282 (1936). Review Number not available.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.