A dynamical characterization of Poisson-Dirichlet distributions

Louis-Pierre Arguin (Princeton University)


We show that a slight modification of a theorem of Ruzmaikina and Aizenman on competing particle systems on the real line leads to a characterization of Poisson-Dirichlet distributions $PD(\alpha,0)$. Precisely, let $\xi$ be a proper random mass-partition i.e. a random sequence $(\xi_i,i\in N)$ such that $\xi_1 \geq \xi_2 \geq \dots \geq 0$ and $\sum_i \xi_i =1$ a.s. Consider $\{W_i\}_{i\in N}$, an iid sequence of random positive numbers whose distribution is absolutely continuous with respect to the Lebesgue measure and $E[W^\lambda]<\infty$ for all $\lambda \in R$. It is shown that, if the law of $\xi$ is invariant under the random reshuffling $$( \xi_i , i \in N) \to \left(\frac{\xi_i W_i}{\sum_j \xi_jW_j } , i \in N \right)$$ where the weights are reordered after evolution, then it must be a mixture of Poisson-Dirichlet distributions $PD(\alpha,0), \alpha\in(0,1)$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 283-290

Publication Date: September 21, 2007

DOI: 10.1214/ECP.v12-1300


  1. Bertoin, Jean. Random fragmentation and coagulation processes.Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2 MR2253162 (Review)
  2. Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications.Second edition.Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036 (99d:60030)
  3. Diaconis, Persi; Mayer-Wolf, Eddy; Zeitouni, Ofer; Zerner, Martin P. W. The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations. Ann. Probab. 32 (2004), no. 1B, 915--938. MR2044670 (2005e:60232)
  4. Liggett, Thomas M. Random invariant measures for Markov chains, and independent particle systems. Z. Wahrsch. Verw. Gebiete 45 (1978), no. 4, 297--313. MR0511776 (80b:60135)
  5. Ruzmaikina, Anastasia; Aizenman, Michael. Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab. 33 (2005), no. 1, 82--113. MR2118860 (2005j:60105)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.