### A 2-Dimensional SDE Whose Solutions are Not Unique

**Jan M. Swart**

*(University of Erlangen-Nuremberg)*

#### Abstract

In 1971, Yamada and Watanabe showed that pathwise uniqueness holds for the SDE $dX= \sigma (X)dB$ when sigma takes values in the n-by-m matrices and satisfies $|\sigma (x)- \sigma (y)| < |x-y|\log(1/|x-y|)^{1/2}$. When $n=m=2$ and $\sigma$ is of the form $\sigma _{ij}(x)= \delta_{ij}s(x)$, they showed that this condition can be relaxed to $| \sigma(x)-\sigma(y)| < |x-y|\log(1/|x-y|)$, leaving open the question whether this is true for general $ 2\times m$ matrices. We construct a $2\times 1$ matrix-valued function which negatively answers this question. The construction demonstrates an unexpected effect, namely, that fluctuations in the radial direction may stabilize a particle in the origin.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 67-71

Publication Date: July 12, 2001

DOI: 10.1214/ECP.v6-1035

#### References

- M. T. Barlow, One dimensional stochastic differential equations with
no strong solution,
*J. London Math. Soc.*,**26**:335-347, 1982. Math. Reviews number 84d:60083 - S. N. Ethier and T. G. Kurtz,
*Markov Processes: Characterization and Convergence*, John Wiley & Sons, New York, 1986. Math. Reviews number 88a:60130 - J. M. Swart, Pathwise uniqueness for a SDE with non-Lipschitz coefficients. preprint 2000. Math. Reviews number not available.
- T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic
differential equations.
*J. Math. Kyoto Univ.*,**11**:155-167, 1971. Math. Reviews number 43 #4150 - T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic
differential equations II.
*J. Math. Kyoto Univ.*,**11**:553-563, 1971. Math. Reviews number 44 #6071

This work is licensed under a Creative Commons Attribution 3.0 License.