A Gaussian Correlation Inequality and its Applications to Small Ball Probabilities

Wenbo V. Li (University of Delaware)


We present a Gaussian correlation inequality which is closely related to a result of Schechtman, Schlumprecht and Zinn (1998) on the well-known Gaussian correlation conjecture. The usefulness of the inequality is demonstrated by several important applications to the estimates of small ball probability.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 111-118

Publication Date: September 29, 1999

DOI: 10.1214/ECP.v4-1012


  1. Berthet, P. and Shi, Z. (1998). Small ball estimates for Brownian motion under a weighted sup-norm. (Preprint)
  2. Csáki, E. (1994). Some limit theorems for empirical processes. In: {it Recent Advances in Statistics and Probability} (Proc. 4th IMSIBAC, eds.: J.P. Vilaplana and M.L. Puri) pp. 247--254. VSP, Utrecht.
  3. Hitczenko, P., Kwapien, S., Li, W.V., Schechtman, G., Schlumprecht, T. and Zinn, J. (1998). Hypercontractivity and comparison of moments of iterated maxima and minima of independent random variables. Electronic Journal of Probability Vol. 3, Paper no. 2, 1-26. Math Review link
  4. Gradshteyn, I.S. and Ryzhik, I.M. (1994). Table of Integrals, Series, and Products, Fifth Edition, Academic Press. Math Review link
  5. Khatri, C.G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Stat. 38, 1853--1867. Math Review link
  6. Kuelbs, J. and Li, W.V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133--157. Math Review link
  7. Kuelbs, J. and Li, W.V. (1999). A Functional LIL for fractional Brownian. In preparation.
  8. Ledoux, M. (1996). Isoperimetry and Gaussian Analysis, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1648, 165--294, Springer-Verlag. Math Review link
  9. Li, W. V. (1998). Small deviations for Gaussian Markov processes under the sup--norm. To appear on J. Theor. Prob.
  10. Li, W.V. (1999a). Small ball estimates for Gaussian Markov processes under the $L_p$-norm, Preprint.
  11. Li, W.V. (1999b). The existence of small ball constants for Gaussian processes under various norms, in preparation
  12. Li, W.V. and Linde, W. (1998). Approximation, metric entropy and small ball estimates for Gaussian measures, To appear on Ann. Probab..
  13. Li, W.V. and Shao, Q.M. (1999a). A note on the Gaussian correlation conjecture, preprint.
  14. Li, W.V. and Shao, Q.M. (1999b). Recent developments in the theory of Gaussian processes: inequalities, small ball probabilities and applications, in preparation.
  15. Lifshits, M.A. and Linde, W. (1999). Entropy numbers of Volterra operators with application to Brownian motion, Preprint.
  16. Monrad, D. and Rootzén, H. (1995). Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields, 101, 173-192. Math Review link
  17. Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion, 2nd edition, Springer-Verlag. Math Review link
  18. Schechtman, G., Schlumprecht, T. and Zinn, J. (1998). On the Gaussian measure of the intersection. Ann. Probab. 26, 346-357. Math Review link
  19. Sidák, Z. (1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Stat. 39, 1425--1434. Math Review link
  20. Shao, Q.M. (1998). A Gaussian correlation inequality and its applications to the existence of small ball constant, preprint.
  21. Song, S.Q. and Yor, M. (1987). Inégalités pour les processus self-similaires arrétés á un temps quelconque. Sém. Prob. XXI. Lecture Notes in Math., 1247, 230--245, Springer-Verlag. Math Review link
  22. Tong, Y.L. (1980). Probability Inequalities in Multi-variate distributions, Academic Press, New York. Math Review link
  23. Talagrand, M. (1993). New Gaussian estimates for enlarged balls, Geometric and Funct. Anal., 3, 502-526. Math Review link

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.