POPULATION MODELS WITH NONLINEAR BOUNDARY CONDITIONS

JEROME GODDARD II, EUN KYOUNG LEE, RATNASINGHAM SHIVAJI

ABSTRACT. We study a two point boundary-value problem describing the steady states of a Logistic growth population model with diffusion and constant yield harvesting. In particular, we focus on a model when a certain nonlinear boundary condition is satisfied.

1. INTRODUCTION

Consider the Logistic growth population dynamics model with nonlinear boundary conditions:

\begin{align*}
 u_t &= d \Delta u + au - bu^2 - ch(x) \quad \text{in } \Omega, \\
 d\alpha(x, u) \frac{\partial u}{\partial \eta} + [1 - \alpha(x, u)]u &= 0 \quad \text{on } \partial \Omega,
\end{align*}

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with \(n \geq 1 \), \(\Delta \) is the Laplace operator, \(d \) is the diffusion coefficient, \(a, b \) are positive parameters, \(c \geq 0 \) is the harvesting parameter, \(h(x) : \overline{\Omega} \to \mathbb{R} \) is a \(C^1 \) function, \(\frac{\partial u}{\partial \eta} \) is the outward normal derivative, and \(\alpha(x, u) : \Omega \times \mathbb{R} \to [0, 1] \) is a nondecreasing \(C^1 \) function.

The parameter \(c \geq 0 \) represents the level of harvesting, \(h(x) \geq 0 \) for \(x \in \Omega \), \(h(x) = 0 \) for \(x \in \partial \Omega \), and \(\|h\|_\infty = 1 \). Here \(ch(x) \) can be understood as the rate of the harvesting distribution. The nonlinear boundary condition (1.2) has only been recently studied by such authors as [1, 2, 3], among others. Here

\[\alpha(x, u) = \alpha(u) = \frac{u}{u - d \frac{\partial u}{\partial \eta}} \]

represents the fraction of the population that remains on the boundary when reached. For the case when \(\alpha(x, u) \equiv 0 \), (1.2) becomes the well known Dirichlet boundary condition. If \(\alpha(x, u) \equiv 1 \) then (1.2) becomes the Neumann boundary condition. Here we will be interested in the study of positive steady state solutions

\[\begin{array}{c}
 u_t = d \Delta u + au - bu^2 - ch(x) \\
 d\alpha(x, u) \frac{\partial u}{\partial \eta} + [1 - \alpha(x, u)]u = 0
\end{array} \]

in \(\Omega \), on \(\partial \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with \(n \geq 1 \), \(\Delta \) is the Laplace operator, \(d \) is the diffusion coefficient, \(a, b \) are positive parameters, \(c \geq 0 \) is the harvesting parameter, \(h(x) : \overline{\Omega} \to \mathbb{R} \) is a \(C^1 \) function, \(\frac{\partial u}{\partial \eta} \) is the outward normal derivative, and \(\alpha(x, u) : \Omega \times \mathbb{R} \to [0, 1] \) is a nondecreasing \(C^1 \) function.

The parameter \(c \geq 0 \) represents the level of harvesting, \(h(x) \geq 0 \) for \(x \in \Omega \), \(h(x) = 0 \) for \(x \in \partial \Omega \), and \(\|h\|_\infty = 1 \). Here \(ch(x) \) can be understood as the rate of the harvesting distribution. The nonlinear boundary condition (1.2) has only been recently studied by such authors as [1, 2, 3], among others. Here

\[\alpha(x, u) = \alpha(u) = \frac{u}{u - d \frac{\partial u}{\partial \eta}} \]

represents the fraction of the population that remains on the boundary when reached. For the case when \(\alpha(x, u) \equiv 0 \), (1.2) becomes the well known Dirichlet boundary condition. If \(\alpha(x, u) \equiv 1 \) then (1.2) becomes the Neumann boundary condition. Here we will be interested in the study of positive steady state solutions
of (1.1)–(1.2) when $d = 1$ and
$$
\alpha(x, u) = \frac{u}{u + 1} \quad \text{on } \partial \Omega.
$$

Hence, we consider the model
\begin{align*}
-\Delta u &= au - bu^2 - ch(x) =: f(x, u) \quad \text{in } \Omega, \quad (1.3) \\
\frac{\partial u}{\partial \eta} + 1 &= 0 \quad \text{on } \partial \Omega. \quad (1.4)
\end{align*}

We will present the results of the case when $n = 1$, $\Omega = (0, 1)$, and $h(x) \equiv 1$.

Thus, we study the nonlinear boundary-value problem
\begin{align*}
-\Delta u &= au - bu^2 - c, \quad x \in (0, 1), \quad (1.5) \\
-u'(0) + 1 &= u(0) = 0, \quad (1.6) \\
[u'(1) + 1]u(1) &= 0. \quad (1.7)
\end{align*}

It is easy to see that analyzing the positive solutions of (1.5)–(1.7) is equivalent to studying the four boundary-value problems
\begin{align*}
-u'' &= au - bu^2 - c, \quad x \in (0, 1), \quad (1.8) \\
u(0) &= 0, \quad u(1) = 0; \quad (1.9) \\
-u'' &= au - bu^2 - c, \quad x \in (0, 1), \quad (1.10) \\
u(0) &= 0, \quad u'(1) = -1; \quad (1.11) \\
-u'' &= au - bu^2 - c, \quad x \in (0, 1), \quad (1.12) \\
u'(0) &= 1, \quad u(1) = 0; \quad (1.13) \\
-u'' &= au - bu^2 - c, \quad x \in (0, 1), \quad (1.14) \\
u'(0) &= 1, \quad u'(1) = -1. \quad (1.15)
\end{align*}

Hence, the positive solutions of these four BVPs are the positive solutions of (1.5)–(1.7). Notice that if $u(x)$ is a solution of (1.10)–(1.11) then $v(x) := u(1 - x)$ is a solution of (1.12)–(1.13). Thus, it suffices to only consider (1.8)–(1.9), (1.10)–(1.11), and (1.14)–(1.15). The structure of positive solutions for (1.8)–(1.9) is known (see [4] and [7]) via the quadrature method introduced by Laetsch in [8]. We develop quadrature methods in Section 2 to completely determine the bifurcation diagram of (1.5)–(1.7). In Section 3 we use Mathematica computations to show that for certain subsets of the parameter space, (1.5)–(1.7) has up to exactly 8 positive solutions. For higher dimensional results, in the case when $\alpha(x, u) = 0$ on $\partial \Omega$ (Dirichlet boundary conditions) see [9], and for the case when $\alpha(x, u) = \frac{u}{u+1}$ on $\partial \Omega$ see recent work in [5].

2. Results via the quadrature method

2.1. Positive solutions of (1.8)–(1.9). In this section we summarize the known results (see [9]) for positive solutions of (1.8)–(1.9). Consider the boundary value problem:
\begin{align*}
-u'' &= au - bu^2 - c =: f(u), \quad x \in (0, 1), \quad (2.1) \\
u(0) &= 0, \quad u(1) = 0. \quad (2.2)
\end{align*}
It is easy to see that positive solutions of (2.1)–(2.2) must resemble Figure 1 where \(\ell_i \) for \(i = 1, 2 \) are the positive zeros of \(f(u) \). The following theorem details the structure of positive solutions of (2.1)–(2.2) for the case when \(b = 1 \):

Theorem 2.1 ([4, 9]).

(1) If \(a < \lambda_1 \) then (2.1)–(2.2) has no positive solution for any \(c \geq 0 \).

(2) If \(\lambda_1 \leq a < \lambda_\ast \) (some \(\lambda_\ast > \lambda_1 \)) then there exists a \(c_0 > 0 \) such that if

- (a) \(0 \leq c < c_0 \) then (2.1)–(2.2) has 2 positive solutions.
- (b) \(c = c_0 \) then (2.1)–(2.2) has a unique positive solution.
- (c) \(c > c_0 \) then (2.1)–(2.2) has no positive solution.

(3) If \(a > \lambda_\ast \) then there exist \(c_0, \tilde{c} > 0 \) such that if

- (a) \(\tilde{c} < c < c_0 \) then (2.1)–(2.2) has 2 positive solutions.
- (b) \(0 \leq c < \tilde{c} \) or \(c = c_0 \) then (2.1)–(2.2) has a unique positive solution.
- (c) \(c > c_0 \) then (2.1)–(2.2) has no positive solution.

Figure 2 illustrates this theorem.

2.2. Positive solutions of (1.10)–(1.11). In this subsection, we adapt the quadrature method in [8] to study

\[-u'' = au - bu^2 - c =: f(u), \quad x \in (0, 1), \]

\[u(0) = 0, \quad u'(1) = -1.\]

Now, define \(F(u) = \int_0^u f(s)ds \), the primitive of \(f(u) \). Since (2.3) is an autonomous differential equation, if \(u(x) \) is a positive solution of (2.3) with \(u'(x_0) = 0 \) for some
$x_0 \in (0, 1)$ then $v(x) := u(x_0 - x)$ and $w(x) := u(x_0 + x)$ both satisfy the initial value problem,

$$-z'' = f(z) \quad (2.5)$$
$$z(0) = u(x_0) \quad (2.6)$$
$$z'(0) = 0 \quad (2.7)$$

for all $x \in [0, d)$ where $d = \min\{x_0, 1 - x_0\}$. As a result of Picard’s existence and uniqueness theorem, $u(x_0 - x) \equiv u(x_0 + x)$. Thus, if we assume that $u(x)$ is a positive solution of (2.3)–(2.4) then it is symmetric around x_0 with $\rho := \|u\|_{\infty} = u(x_0)$. This implies that $u'(x_0) = 0$, $u'(x) > 0$; $[0, x_0]$, and $u'(x) < 0$; $(x_0, 1]$. Using symmetry about x_0, the boundary conditions (2.4), and the sign of u'' given by $f(u)$ we see that positive solutions of (2.3)–(2.4) must resemble Figure 3, where $\rho = \|u\|_{\infty}$ and $q = u(1)$. This implies that $\ell_1 < \rho < \ell_2$ and $0 \leq q < \rho$ where ℓ_i, $i = 1, 2$ are the zeros of $f(u)$.

![Figure 3. Typical solution of (2.3)–(2.4)](image)

Multiplying (2.3) by u' gives

$$-u'u'' = f(u)u' \quad (2.8)$$

Integration of (2.8) with respect to x gives,

$$-\left(\frac{|u'(x)|^2}{2}\right) = [F(u(x))] + K. \quad (2.9)$$

Substituting $x = 1$ and $x = x_0$ into (2.9) yields,

$$-K = F(q) + \frac{1}{2} \quad (2.10)$$
$$K = -F(\rho). \quad (2.11)$$

Combining (2.10) and (2.11), we have

$$F(\rho) = F(q) + \frac{1}{2}. \quad (2.12)$$

Substituting (2.11) into (2.9) yields,

$$-\left(\frac{|u'(x)|^2}{2}\right) = [F(u(x))] - F(\rho). \quad (2.13)$$
Now, solving for u' in (2.13) gives
\[u'(x) = \sqrt{2} \sqrt{F(\rho) - F(u(x))}, \quad x \in [0, x_0], \] (2.14)
\[u'(x) = -\sqrt{2} \sqrt{F(\rho) - F(u(x))}, \quad x \in [x_0, 1]. \] (2.15)

Integrating (2.14) and (2.15) with respect to x and using a change of variables, we have
\[\int_0^{u(x)} \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2}x, \quad x \in [0, x_0], \] (2.16)
\[\int_\rho^{u(x)} \frac{ds}{\sqrt{F(\rho) - F(s)}} = -\sqrt{2}(x - x_0), \quad x \in [x_0, 1]. \] (2.17)

Substitution of $x = x_0$ into (2.16) and $x = 1$ into (2.17) gives
\[\int_0^{\rho} \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2}x_0 \] (2.18)
\[\int_\rho^q \frac{ds}{\sqrt{F(\rho) - F(s)}} = -\sqrt{2}(1 - x_0). \] (2.19)

Finally, subtracting (2.19) from (2.18), yields
\[2 \int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}} - \int_0^q \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2}, \] (2.20)

or equivalently,
\[2 \int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}} - \int_0^q \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2}. \] (2.21)

We note that in order for $\int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}}$ to be well defined, $F(\rho) > F(s)$ for all $s \in [0, \rho)$. Moreover, the improper integral is convergent if $f(\rho) > 0$. Thus, for such a positive solution to exist, $f(u)$ and $F(u)$ must resemble Figure 4, where μ_1, ℓ_i, and θ_i are the zeros of $f'(u)$, $f(u)$, and $F(u)$ respectively for $i = 1, 2$.

![Figure 4. Graph of $f(u)$ (left), and of $F(u)$ (right) (image)](image)

From Figure 4, we note that if $\rho \in (\theta_1, \ell_2)$ then both of these conditions hold and the integrals in (2.21) are well defined. From this and letting $c_1 := \frac{3\sigma^2}{105}$ and $c_2 := \frac{\sigma^2}{3}$, we can arrive at the following result.

Theorem 2.2. If $c > c^* (a, b)$ then (2.3)–(2.4) has no positive solution, where $c^* (a, b) = \min \{c_1, c_2\} = \frac{3\sigma^2}{105}$.
Further, since \(x_0 \in (0, 1) \) is fixed for each \(\rho > 0 \), we need a unique \(q < \rho \) corresponding to each \(\rho \)-value such that (2.12) is satisfied. Otherwise, uniqueness of solutions to the initial value problem, (2.5)–(2.7), would be violated. Let
\[
H(x) := F(x) + \frac{1}{2}.
\]
It follows that \(H'(x) = -bx^2 + ax - c, \) \(H(0) = 1/2, \) and \(H'(0) = -c < 0. \) In order for a unique \(q < \rho \) to exist such that \(H(q) = F(\rho), \) \(H(x) \) must have the following structure in Figure 5, where \(H'(\ell_2) = 0. \) So, for such a unique \(q < \rho \) to exist \(F(\rho) > 1/2. \)

![Figure 5. Graph of \(H(x) \)](chart.png)

Since \(\rho \in (\theta_1, \ell_2), \) for this to be true we will need \(H(\ell_2) > 1/2. \) In fact, if
\[
F(\ell_2) > \frac{1}{2} \tag{2.22}
\]
then clearly for \(\rho \in (\theta_1, \ell_2) \) with \(\rho \approx \ell_2 \) we have \(F(\rho) > 1/2. \) It is easy to see that (2.22) will be satisfied if (solving using Mathematica)
\[
c < c_3 := \frac{9a^2}{144b} - \frac{9(a^4 - 96ab^2)}{144b \left(-a^6 - 240a^3b^2 + 16(72b^4 + 3\sqrt{b^2(a^3 + 12b^2)^3}) \right)^{1/3}} - \frac{9}{144b} \left(-a^6 - 240a^3b^2 + 16(72b^4 + 3\sqrt{b^2(a^3 + 12b^2)^3}) \right)
\]
and for \(c_3 \) to be positive (again using Mathematica)
\[
a > a_0 := \sqrt[3]{3b^2}
\]
both hold. This leads to the following results.

Theorem 2.3. If \(a \leq a_0 \) then (2.3)–(2.4) has no positive solution for any \(c \geq 0. \)

Theorem 2.4. If \(a > a_0 \) then there is a \(c^* (a, b) \leq \min\{c_1, c_2, c_3\} \) such that for \(c \geq c^* (2.3)–(2.4) \) has no positive solution.

We now state and prove the main theorem of this subsection.

Theorem 2.5. If \(a > a_0 \) and \(c < c^* (a, b) \) then there is a unique \(r(a, b) \in (\theta_1, \ell_2) \) such that \(F(r) = 1/2 \) and
\[
G(\rho) := 2 \int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}} - \int_0^q \frac{ds}{\sqrt{F(\rho) - F(s)}}
\]
is well defined for all \(\rho \in [r, \ell_2) \) where \(q < \rho \) is the unique solution of \(F(\rho) = H(q) \).
Moreover, \([2.3] - [2.4] \) has a positive solution, \(u(x) \), with \(\rho = \|u\|_\infty \) if and only if \(G(\rho) = \sqrt{2} \) for some \(\rho \in [r, \ell_2) \).

Proof. Let \(a, b > 0 \) s.t. \(a > a_0 \) and \(c \in [0, c^*(a, b)) \). From the preceding discussion, it follows that if \(u \) is a positive solution to \([2.3] - [2.4] \) with \(\rho = \|u\|_\infty \) then \(G(\rho) = \sqrt{2} \).

Next, suppose \(G(\rho) = \sqrt{2} \) for some \(\rho \in [r, \ell_2) \). Define \(u(x) : (0, 1) \to \mathbb{R} \) by

\[
\int_0^u \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2} x, \quad x \in [0, x_0],
\]

\[
\int_\rho^u \frac{ds}{\sqrt{F(\rho) - F(s)}} = -\sqrt{2}(x - x_0), \quad x \in [x_0, 1].
\]

Now, we show that \(u(x) \) is a positive solution to \([2.3] - [2.4] \). It is easy to see that the turning point is given by \(x_0 = \frac{1}{\sqrt{2}} \int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}} \). The function, \(\int_0^u \frac{ds}{\sqrt{F(\rho) - F(s)}} \), is a differentiable function of \(u \) which is strictly increasing from 0 to \(x_0 \) as \(u \) increases from 0 to \(\rho \). Thus, for each \(x \in [0, x_0] \), there is a unique \(u(x) \) such that

\[
\int_0^u \frac{ds}{\sqrt{F(\rho) - F(s)}} = \sqrt{2} x
\]

Moreover, by the Implicit Function theorem, \(u \) is differentiable with respect to \(x \). Differentiating \([2.25] \) gives

\[
u'(x) = \sqrt{2}[F(\rho) - F(u)], \quad x \in [0, x_0].
\]

Similarly, \(u \) is a decreasing function of \(x \) for \(x \in [x_0, 1] \) which yields,

\[
v'(x) = -\sqrt{2}[F(\rho) - F(u)], \quad x \in [x_0, 1].
\]

This implies

\[
\frac{-(u')^2}{2} = F(\rho) - F(u(x)).
\]

Differentiating again, we have \(-u''(x) = f(u(x)) \). Thus, \(u(x) \) satisfies \([2.3] \). Now, from our assumption, \(G(\rho) = \sqrt{2} \), it follows that \(u(0) = 0 \) and \(u(1) = q(\rho) \). Since \(F(\rho) = H(q(\rho)) = F(q) + \frac{1}{4} \), we have that \(u''(1) = -\sqrt{2}[F(\rho) - F(q)] = -1 \). Hence, the boundary conditions \([2.4] \) are both satisfied.

2.3. Positive solutions of \([1.14] - [1.15] \). A similar quadrature method can be adapted to study

\[
-u'' = au - bu^2 - c =: f(u), \quad x \in (0, 1),
\]

\[
u'(0) = 1, \quad u'(1) = -1.
\]

Again, define \(F(u) = \int_0^u f(s)ds \), the primitive of \(f(u) \). Using a similar argument as before, symmetry about \(x_0 \), the boundary conditions \([2.26] - [2.27] \), and the sign of \(u'' \) given by \(f(u) \) ensure that positive solutions of \([2.26] - [2.27] \) must resemble Figure 6, where \(\rho = \|u\|_\infty \) and \(q = u(0) = u(1) \). Clearly, \(x_0 = 1/2 \) in this case.

Through an almost identical approach as the one in Section 2.2, we can prove the following results.

Theorem 2.6. If \(a \leq a_0 \) then \([2.26] - [2.27] \) has no positive solution for any \(c \geq 0 \).

Theorem 2.7. If \(a > a_0 \) then there is a \(c^*(a, b) \leq \min\{c_1, c_2, c_3\} \) such that for \(c \geq c^* \) \([2.26] - [2.27] \) has no positive solution.
We now state the main theorem of this subsection.

Theorem 2.8. If \(a > a_0 \) and \(c < c^*(a, b) \) then there is a unique \(r(a, b, c) \in (\theta, \ell_2) \) such that \(F(r) = \frac{1}{2} \) and

\[
G(\rho) := 2 \int_0^\rho \frac{ds}{\sqrt{F(\rho) - F(s)}} - 2 \int_0^q \frac{ds}{\sqrt{F(\rho) - F(s)}}
\]

is well defined for all \(\rho \in [r, \ell_2) \) where \(q < \rho \) is the unique solution of \(F(\rho) = H(q) \).

Moreover, \((2.26) - (2.27)\) has a positive solution, \(u(x) \), with \(\rho = \|u\|_\infty \) if and only if \(G(\rho) = \sqrt{2} \) for some \(\rho \in [r, \ell_2) \).

Remark. See [7] where Ladner et al. adapted the quadrature method to study the case when \(\alpha(x, u) = \frac{u}{a} \) on \(\partial \Omega \). Also, see [6] where the quadrature method was adapted to study the case with a Strong Allee effect and \(\alpha(x, u) = \frac{u}{b} \) on \(\partial \Omega \).

3. **Computational results**

3.1. **Positive solutions of \((1.10) - (1.11)\) and \((1.12) - (1.13)\).** We are particularly interested in the case when \(b = 1 \). From Theorem 2.5, we plot the level sets of

\[
G(\rho) - \sqrt{2} = 0
\]

for \(a > \sqrt[3]{3} \) and \(\rho \in [r, \ell_2) \). By implementing a numerical root-finding algorithm in Mathematica we were able to solve equation \((3.1)\). Explicit formulas were used to calculate the unique \(r = r(a, b, c) \) and \(q = q(\rho) \) values. Note that these computations are expensive due to the natural of the improper integral equations involved. Figures 7-9 depict several level sets plotted within \([r, \ell_2) \times [0, c^*]\). In what follows, the green curve represents \(\rho \) vs \(c \) while the upper and lower branches of the dotted black curve represent \(\ell_2 \) and \(r \), respectively. The green curve’s lower branch begins to shrink for \(a \geq 10.1388 \). This is due to the fact that solutions of \((3.1)\) are outside of \([r, \ell_2) \). The bifurcation diagrams also indicate the following results.

Theorem 3.1. For \(b = 1 \), if \(a < a_4 \) (for \(a_4 \approx 5.0407 \)) then \((1.10) - (1.11)\) and \((1.12) - (1.13)\) have no positive solution for any \(c \geq 0 \).

Theorem 3.2. If \(b = 1 \) then \(c_0(a) \to c^*(a) \) as \(a \to \infty \). Furthermore, \(\rho \to \ell_2 \) as \(a \to \infty \) where \(u(x) \) is a positive solution to \((1.10) - (1.11)\) or \((1.12) - (1.13)\) with \(\|u\|_\infty = \rho \).
3.2. Positive solutions of (1.14)–(1.15). Again, we are particularly interested in the case when \(b = 1 \). Recalling Theorem 2.8, we plot the level sets of

\[
\tilde{G}(\rho) - \sqrt{2} = 0
\]

Using our numerical root-finding algorithm in Mathematica to solve equation (3.2) and explicit formulas to calculate the unique \(r = r(a, b, c) \) and \(q = q(\rho) \) values, level sets were plotted within \([r, \ell_2) \times [0, c^*]\). The blue curve breaks into two components somewhere around \(a = 4.39 \), with the lower component vanishing for \(a > 10.1387 \). This is due to the fact that the \(\rho \)-values, which are solutions of (3.2), are outside of \([r, \ell_2)\). These bifurcation diagrams also indicate the following results.

Theorem 3.3. For \(b = 1 \), if \(a < a_1 \) (for \(a_1 \approx 2.8324 \)) then (1.14)–(1.15) has no positive solution for any \(c \geq 0 \).

Theorem 3.4. If \(b = 1 \) then \(c_0(a) \to c^*(a) \) as \(a \to \infty \). Furthermore, \(\rho \to \ell_2 \) as \(a \to \infty \) where \(u(x) \) is a positive solution to (1.14)–(1.15) with \(\|u\|_{\infty} = \rho \).

3.3. Structure of Positive solutions to (1.5)–(1.7). Combining results from the three cases, (1.8)–(1.9), (1.10)–(1.11), and (1.14)–(1.15) while recalling that the
Theorem 3.5. If \(a \leq \min\left[\sqrt{3b^2}, \lambda_1\right] \) then (1.5)–(1.7) has no positive solution for any \(c \geq 0 \).

Moreover, our computational results for the case \(b = 1 \) provide the following nonexistence result.

Theorem 3.6. For \(b = 1 \), if \(a < a_1 \) (for \(a_1 \approx 2.8324 \)) then (1.5)–(1.7) has no positive solution for any \(c \geq 0 \).

Also, our computations indicate the following existence results for \(b = 1 \). For what follows, (1.8)–(1.9) is depicted in yellow, (1.10)–(1.11) and (1.12)–(1.13) both in green, and (1.14)–(1.15) in blue.
Theorem 3.7. For \(b = 1 \), if \(a \in [a_1, a_2) \) (for some \(a_2 > a_1 \)) (for \(a_2 \approx 4.39 \)) then there exists a \(C_0 > 0 \) such that if

1. \(0 \leq c < C_0 \) then \((1.5) - (1.7)\) has exactly 2 positive solutions.
2. \(c = C_0 \) then \((1.5) - (1.7)\) has a unique positive solution.
3. \(c > C_0 \) then \((1.5) - (1.7)\) has no positive solution.

A bifurcation diagram of the case when \(b = 1 \) and \(a = 4 \) is shown in Figure 13.

Theorem 3.8. For \(b = 1 \), if \(a \in [a_2, a_3) \) (some \(a_3 \in (4.4, 5) \)) then there exist \(C_i > 0 \), \(i = 0, 1, 2 \), such that if

1. \(0 \leq c \leq C_2 \) or \(C_1 \leq c < C_0 \) then \((1.5) - (1.7)\) has exactly 2 positive solutions.
2. \(C_2 < c < C_1 \) or \(c = C_0 \) then \((1.5) - (1.7)\) has a unique positive solution.
3. \(c > C_0 \) then \((1.5) - (1.7)\) has no positive solution.

Figure 14 illustrates Theorem 3.8.

Theorem 3.9. For \(b = 1 \), if \(a \in [a_3, a_4) \) (for \(a_4 \approx 5.0407 \)) then there exist \(C_i > 0 \), \(i = 0, 1, 2 \), such that if

1. \(0 \leq c \leq C_1 \) then \((1.5) - (1.7)\) has exactly 2 positive solutions.
2. \(C_1 < c \leq C_0 \) then \((1.5) - (1.7)\) has a unique positive solution.
3. \(c > C_0 \) then \((1.5) - (1.7)\) has no positive solution.

Theorem 3.9 is illustrated in Figure 15.

Theorem 3.10. For \(b = 1 \), if \(a \in [a_4, a_5) \) (for \(a_5 = \pi^2 \)) then there exist \(C_i > 0 \), \(i = 0, 1, 2 \), such that if
Theorem 3.10 is depicted in Figure 16.

Theorem 3.11. For $b = 1$, if $a \in [a_5, a_6)$ (some $a_6 \in (10, 10.1388)$) then there exist $C_i > 0$, $i = 0, 1, 2, 3$, such that if

1. $0 \leq c \leq C_3$ then $(1.5) - (1.7)$ has exactly 8 positive solutions.
2. $c = C_3$ then $(1.5) - (1.7)$ has exactly 7 positive solutions.
3. $C_3 < c \leq C_2$ then $(1.5) - (1.7)$ has exactly 6 positive solutions.
4. $C_2 < c < C_1$ then $(1.5) - (1.7)$ has exactly 5 positive solutions.
5. $c = C_1$ then $(1.5) - (1.7)$ has exactly 3 positive solutions.
6. $C_1 < c \leq C_0$ then $(1.5) - (1.7)$ has a unique positive solution.
7. $c > C_0$ then $(1.5) - (1.7)$ has no positive solution.

Figure 17 shows the bifurcation diagram for $a = 10$, $b = 1$ along with Figure 18 which gives two small cross sections of the diagram.

Theorem 3.12. For $b = 1$, if $a \in [a_6, a_7)$ (for $a_7 \approx 10.1388$) then there exist $C_i > 0$, $i = 0, 1, 2, 3$, such that if

1. $0 \leq c \leq C_3$ then $(1.5) - (1.7)$ has exactly 8 positive solutions.
Figure 17. ρ vs c for $a = 10$, $b = 1$

Figure 18. ρ vs c cross-sections for $a = 10$, $b = 1$

1. $C_3 < c < C_2$ then $(1.5) - (1.7)$ has exactly 7 positive solutions.
2. $C_2 < c < C_1$ then $(1.5) - (1.7)$ has exactly 6 positive solutions.
3. $C_1 < c <= C_2$ then $(1.5) - (1.7)$ has exactly 5 positive solutions.
4. $C_1 < c < C_0$ then $(1.5) - (1.7)$ has a unique positive solution.
5. $c = C_1$ then $(1.5) - (1.7)$ has exactly 3 positive solutions.
6. $c > C_0$ then $(1.5) - (1.7)$ has no positive solution.

The bifurcation diagram for $a = 10.1, b = 1$ is depicted in Figures 19 and 20.

Figure 19. ρ vs c for $a = 10.1$, $b = 1$

Theorem 3.13. For $b = 1$, if $a \in [a_7, a_8]$ (for $a_8 = 4\pi^2$) then there exist $C_i > 0$, $i = 0, 1, 2, 3$, such that if
Figure 20. ρ vs c cross-sections for $a = 10.1$, $b = 1$

1. $0 \leq c < C_3$ or $C_2 \leq c < C_1$ then (1.5)–(1.7) has exactly 5 positive solutions.
2. $c = C_3$ then (1.5)–(1.7) has exactly 4 positive solutions.
3. $C_3 < c < C_2$ or $c = C_1$ then (1.5)–(1.7) has exactly 3 positive solutions.
4. $C_1 < c \leq C_0$ then (1.5)–(1.7) has a unique positive solution.
5. $c > C_0$ then (1.5)–(1.7) has no positive solution.

Figure 21 shows the bifurcation diagram for $a = 11$, $b = 1$.

Theorem 3.14. For $b = 1$, if $a \in (a_8, \infty)$ then there exist $C_i > 0$, $i = 0, 1, 2, 3$, such that if

1. $C_3 \leq c < C_2$ then (1.5)–(1.7) has exactly 5 positive solutions.
2. $0 \leq c < C_3$ or $c = C_3$ then (1.5)–(1.7) has exactly 4 positive solutions.
3. $C_2 < c \leq C_1$ then (1.5)–(1.7) has exactly 3 positive solutions.
4. $C_1 < c \leq C_0$ then (1.5)–(1.7) has a unique positive solution.
5. $c > C_0$ then (1.5)–(1.7) has no positive solution.

The bifurcation diagram for $a = 40$, $b = 1$ is shown in Figure 22

References

Figure 22. ρ vs c for $a = 40$, $b = 1$

Jerome Goddard II
Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA
E-mail address: jg440@msstate.edu

Eun Kyoung Lee
Department of Mathematics, Pusan National University, Busan 609-735, Korea
E-mail address: eunkyoung165@gmail.com

Ratnasingham Shivaji
Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA
E-mail address: shivaji@ra.msstate.edu