MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR \(m \)-POINT BOUNDARY-VALUE PROBLEMS WITH NONLINEARITIES DEPENDING ON THE DERIVATIVE

YA MA, BAOQIANG YAN

Abstract. Using the fixed point theorem in cones, this paper shows the existence of multiple positive solutions for the singular \(m \)-point boundary-value problem

\[
\begin{align*}
 x''(t) + a(t)f(t, x(t), x'(t)) &= 0, \quad 0 < t < 1, \\
 x'(0) &= 0, \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i),
\end{align*}
\]

where \(0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1 \), \(a_i \in [0, 1) \), \(i = 1, 2, \ldots, m - 2 \), with \(0 < \sum_{i=1}^{m-2} a_i < 1 \) and \(f \) maybe singular at \(x = 0 \) and \(x' = 0 \).

1. Introduction

The study of multi-point boundary-value problems (BVP) for linear second-order ordinary differential equations was initiated by Il’in and Moiseev \[5, 6\]. Since then, many authors have studied general nonlinear multi-point BVP; see for examples \[4, 17\], and references therein. Gupta, Ntouyas and Tsamatos \[4\] considered the existence of a solution in \(C^1[0, 1] \) for the \(m \)-point boundary-value problem

\[
\begin{align*}
 x''(t) &= f(t, x(t), x'(t)) + e(t), \quad 0 < t < 1, \\
 x'(0) &= 0, \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i),
\end{align*}
\]

where \(\xi_i \in (0, 1) \), \(i = 1, 2, \ldots, m - 2 \), \(0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1 \), \(a_i \in \mathbb{R} \), \(i = 1, 2, \ldots, m - 2 \), have the same sign, \(\sum_{i=1}^{m-2} a_i \neq 1 \), \(e \in L^1[0, 1] \), \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) is a function satisfying Carathéodory conditions and a growth condition of the form

\[
|f(t, u, v)| \leq p_1(t)|u| + q_1(t)|v| + r_1(t),
\]

where \(p_1, q_1, r_1 \in L^1[0, 1] \). Recently, using Leray-Schauder continuation theorem, Ma and O’Regan proved the existence of positive solutions of \(C^1[0, 1] \) solutions for the above BVP, where \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) satisfies the Carathéodory conditions (see \[17\]). Khan and Webb \[10\] obtained

\[\text{2000 Mathematics Subject Classification. 34B10, 34B15.}\]

\[\text{Key words and phrases. m-point boundary-value problem; singularity; positive solutions; fixed point theorem.}\]

\[\text{©2008 Texas State University - San Marcos.}\]

\[\text{Submitted August 13, 2008. Published October 24, 2008.}\]

\[\text{Supported by grants 10871120 from the National Natural Science, and Y2005A07 from the Natural Science of Shandong Province, China.}\]
a interesting result which presents the multiplicity of existence of at least three solutions of a second-order three-point boundary-value problem. However, up to now, there are a fewer results on the existence of multiple solutions to (1.1). In view of the importance of the research on the multiplicity of positive solutions for differential equations [1, 2, 9, 10, 11, 12, 14, 15], the goal of this paper is to fill this gap in the literature.

There are main four sections in this paper. In section 2, we give a special cone and its properties. In section 3, using the theory of fixed point index on a cone, we present the existence of multiple positive solutions to (1.1) with \(f \) and its properties. In section 4, under the condition \(f \) is singular at \(x' = 0 \) but not at \(x = 0 \). In section 5, under the condition \(f \) is singular at \(x = 0 \) but not at \(x' = 0 \), we present the existence of multiple positive solutions to (1.1).

2. Preliminaries

Let \(C^1[0, 1] = \{ x : [0, 1] \to \mathbb{R} \text{ such that } x(t) \text{ be continuous on } [0, 1] \text{ and } x'(t) \text{ continuous on } [0, 1] \} \) with norm \(\| x \| = \max \{ \gamma \| x \|_1, \gamma \| x \|_2 \} \), where

\[
\| x \|_1 = \max_{t \in [0, 1]} |x(t)|, \quad \| x \|_2 = \max_{t \in [0, 1]} |x'(t)|, \\
\gamma = \sum_{i=1}^{m-2} a_i (1 - \xi_i), \quad \delta = \sum_{i=1}^{m-2} a_i (1 - \xi_i).
\]

Let

\[P = \{ x \in C^1[0, 1] : x(t) \geq \gamma \| x \|_1, \forall t \in [0, 1], x(0) \geq \delta \| x \|_2 \}. \]

Obviously, \(C^1[0, 1] \) is a Banach space and \(P \) is a cone in \(C^1[0, 1] \).

Lemma 2.1. Let \(\Omega \) be a bounded open set in real Banach space \(E \), \(\theta \in \Omega \), \(P \) be a cone in \(E \) and \(A : \Omega \cap P \to P \) be continuous and completely continuous. Suppose

\[
\lambda Ax \neq x, \quad \forall x \in \partial \Omega \cap P, \lambda \in (0, 1).
\]

Then \(i(A, \Omega \cap P, P) = 1 \).

Lemma 2.2. Let \(\Omega \) be a bounded open set in real Banach space \(E \), \(\theta \in \Omega \), \(P \) be a cone in \(E \) and \(A : \Omega \cap P \to P \) be continuous and completely continuous. Suppose

\[
Ax \not\leq x, \quad \forall x \in \partial \Omega \cap P.
\]

Then \(i(A, \Omega \cap P, P) = 0 \).

Let \(\mathbb{R}_+ = (0, +\infty), \mathbb{R}_- = (-\infty, 0), \mathbb{R} = (-\infty, +\infty) \). The following conditions will be used in this article.

\[
a(t) \in C((0, 1) \cap L^1[0, 1], \quad a(t) > 0, \quad t \in (0, 1); \\
f \in C((0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-, [0, +\infty)).
\]

There exists \(g \in C([0, +\infty) \times (-\infty, 0], [0, +\infty)) \) such that

\[
f(t, x, y) \leq g(x, y), \forall (t, x, y) \in [0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-.
\]
For $x \in P$ and $t \in [0, 1]$, define operator

$$(Ax)(t) = - \int_0^t (t - s)a(s)f(s, x(s)x'(s))ds$$

$$+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds - \sum_{i=1}^{m-2} a_i \int_{\xi_i}^1 (\xi_i - s)a(s)f(s, x(s), x'(s))ds \right).$$

(2.6)

Lemma 2.3 ([17]). Assume (2.1). Then for $y \in C[0, 1]$ the problem

$$x'' + y(t) = 0, t \in (0, 1)$$

$$x'(0) = \sum_{i=1}^{m-2} b_i x'(\xi_i), \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i)$$

(2.7)

has a unique solution

$$x(t) = - \int_0^t (t - s)y(s)ds + Mt + N,$$

(2.8)

where,

$$M = \frac{\sum_{i=1}^{m-2} b_i \int_0^{\xi_i} a(s)y(s)ds}{\sum_{i=1}^{m-2} b_i - 1},$$

$$N = \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)y(s)ds - \sum_{i=1}^{m-2} a_i \int_{\xi_i}^1 (\xi_i - s)a(s)y(s)ds \right)$$

$$- \sum_{i=1}^{m-2} b_i \int_{\xi_i}^1 a(s)y(s)ds \left(1 - \sum_{i=1}^{m-2} a_i \xi_i \right).$$

Further, if $y \geq 0$, for all $t \in [0, 1]$, x satisfies

$$\inf_{t \in [0, 1]} x(t) \geq \gamma \|x\|_1,$$

(2.9)

where $\gamma = (\sum_{i=1}^{m-2} a_i (1 - \xi_i))/(1 - \sum_{i=1}^{m-2} a_i \xi_i)$.

Lemma 2.4. Suppose (2.3)–(2.5) hold. Then $A : P \to P$ is a completely continuous operator.
Proof. For \(x \in P \), from (2.6), one has

\[
(Ax)(t) \geq - \int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds \right) \\
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)a(s)f(s, x(s), x'(s))ds \\
\geq \frac{\sum_{i=1}^{m-2} a_i (1 - \xi)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)f(s, x(s), x'(s))ds \geq 0, \quad t \in [0, 1],
\]

(2.10)

\[
|(Ax)(t)| = - \int_0^1 (t - s)a(s)f(s, x(s), x'(s))ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds \right) \\
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)a(s)f(s, x(s), x'(s))ds \\
\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)f(s, x(s), x'(s))ds \\
\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)ds \max_{0 \leq c \leq \|x\|, -\|x\| \leq \|x'\| \leq 0} g(c, c') < +\infty, \quad t \in [0, 1],
\]

(2.11)

\[
|(Ax)'(t)| = \left| - \int_0^t a(s)f(s, x(s), x'(s))ds \right| \\
= \int_0^t a(s)f(s, x(s), x'(s))ds \\
\leq \int_0^1 a(s)f(s, x(s), x'(s))ds \\
\leq \int_0^1 a(s)ds \max_{0 \leq c \leq \|x\|, -\|x\| \leq \|x'\| \leq 0} g(c, c') < +\infty,
\]

(2.12)

which implies that \(A \) is well defined.

\[
(Ax)(0) = \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds \right)
\]
On the other hand, then
\[
Ax \subseteq \mathbb{R}^P
\]
By Lemma 2.3, we have \((\xi_i - s)a(s)f(s, x(s), x'(s))ds)\)

\[\frac{1}{1 - \sum_{i=1}^{m-2} a_i \int_0^1 (1 - s)a(s)f(s, x(s), x'(s))ds} \geq \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)f(s, x(s), x'(s))ds.\]

On the other hand,
\[
\|Ax\|_2 = \max_{t \in [0,1]} |(Ax)'(t)| = \max_{t \in [0,1]} \left| - \int_0^t a(s)f(s, x(s)x'(s))ds \right| = \int_0^1 a(s)f(s, x(s)x'(s))ds.
\]

Then
\[
(Ax)(0) \geq \delta \|Ax\|_2. \tag{2.13}
\]

By Lemma 2.3 we have \((Ax)(t) \geq \gamma \|Ax\|_1\). As a result, \(Ax \in P\), which implies \(AP \subseteq P\). By a standard argument, we know that \(A : P \to P\) is continuous and completely continuous.

3. Singularities at \(x' = 0\) but not at \(x = 0\)

In this section the nonlinearity \(f\) may be singular at \(x' = 0\) but not at \(x = 0\). We will assume that the following conditions hold.

(H1) \(a(t) \in C(0,1) \cap L^1[0,1], \ a(t) > 0, \ t \in (0,1)\)

(H2) \(f(t, u, z) \leq h(u)[g(z) + r(z)], \) where \(f \in C([0,1] \times \mathbb{R}_+ \times \mathbb{R}_-, \mathbb{R}_+), \ g(z) > 0\) continuous and nondecreasing on \(\mathbb{R}_-, \ h(u) \geq 0\) continuous and nondecreasing on \(\mathbb{R}_+, \ r(z) > 0\) continuous and non-increasing on \((−∞, 0]\);

(H3)
\[
\sup_{c \in \mathbb{R}_+} \frac{c}{\frac{1}{1-\sum_{i=1}^{m-2} a_i \xi_i + 1} \int_0^1 h(c) \int_0^1 a(s)ds} > 1,
\]

where \(I(z) = \int_0^z g(u)du = r(u)\), \(z \in \mathbb{R}_-\);

(H4) There exists a function \(g_1 \in C([0,+∞) \times (−∞, 0], [0,0] \times \mathbb{R}_+)\), such that \(f(t, u, z) \geq g_1(t, u, z), \forall (t, u, z) \in [0,1] \times \mathbb{R}_+ \times \mathbb{R}_-\), and \(\lim_{u \to -∞} \frac{g_1(u, z)}{a} = +∞\), uniformly for \(z \in \mathbb{R}_-\).

(H5) There exists a function \(\Psi_H \in C([0,1], \mathbb{R}_+)\) and a constant \(0 \leq \delta < 1\) such that \(f(t, u, z) \geq \Psi_H(t)u^\delta\), for all \((t, u, z) \in [0,1] \times [0,H] \times \mathbb{R}_-\).
For \(n \in \{1, 2, \ldots \} \) and \(x \in P \), define operator
\[
(A_n x)(t) = - \int_0^t (t - s)a(s)f(s, x(s), -|x'(s)| - \frac{1}{n}) ds
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x(s), -|x'(s)| - \frac{1}{n}) ds \right)
- \sum_{i=1}^{m-2} a_i \int_0^t (\xi_i - s)a(s)f(s, x(s), -|x'(s)| - \frac{1}{n}) ds, \quad t \in [0, 1].
\] (3.1)

Theorem 3.1. Suppose (H1)–(H5) hold. Then \([1, 1]\) has at least two positive solutions \(x_{0,1}, x_{0,2} \in C^1[0, 1] \cap C^2(0, 1) \) with \(x_{0,1}(t), x_{0,2}(t) > 0, \ t \in [0, 1] \).

Proof. Choose \(R_1 > 0 \) such that
\[
\frac{R_1}{1 - \sum_{i=1}^{m-2} a_i} > 1.
\] (3.2)

From the continuity of \(I^{-1} \) and \(h \), we can choose \(\varepsilon > 0 \) and \(\varepsilon < R_1 \) with
\[
\frac{R_1}{1 - \sum_{i=1}^{m-2} a_i} > 1,
\] (3.3)

\(n_0 \in \{1, 2, \ldots \} \) with \(\frac{1}{n_0} < \min\{\varepsilon, \delta/2\} \) and let \(N_0 = \{n_0, n_0 + 1, \ldots \} \).

Lemma 2.4 guarantees that for \(n \in N_0 \), \(A_n : P \to P \) is a completely continuous operator. Let
\[
\Omega_1 = \{x \in C^1[0, 1] : \|x\| < R_1\}.
\]

We show that
\[
x \neq \mu A_n x, \quad \forall x \in P \cap \partial \Omega_1, \quad \mu \in (0, 1), \ n \in N_0.
\] (3.4)

In fact, if there exists an \(x_0 \in P \cap \partial \Omega_1 \) and \(\mu_0 \in (0, 1) \) such that \(x_0 = \mu_0 A_n x_0 \),
\[
x_0(t) = -\mu_0 \int_0^t (t - s)a(s)f(s, x_0(s), -|x_0'(s)| - \frac{1}{n}) ds
+ \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x_0(s), -|x_0'(s)| - \frac{1}{n}) ds \right)
- \sum_{i=1}^{m-2} a_i \int_0^t (\xi_i - s)a(s)f(s, x_0(s), -|x_0'(s)| - \frac{1}{n}) ds, \quad t \in [0, 1].
\]

Then
\[
x_0'(t) = -\mu_0 \int_0^t a(s)f(s, x_0(s), -|x_0'(s)| - \frac{1}{n}) ds, \quad \forall t \in [0, 1].
\] (3.5)

Obviously, \(x_0'(t) \leq 0, \ t \in (0, 1) \), and since \(x_0(1) > 0 \), \(x_0(t) > 0, \ t \in [0, 1] \). Differentiating (3.5), we have
\[
x_0''(t) + \mu_0 a(t)f(t, x_0(t), x_0'(t) - \frac{1}{n}) = 0, \quad 0 < t < 1,
\]
\[
x_0''(0) = 0, \quad x_0(1) = \sum_{i=1}^{m-2} a_i x_0(\xi_i).
\] (3.6)
Then
\[-x_0''(t) = \mu_0 a(t) f(t, x_0(t), x_0'(t) - \frac{1}{n})\]
\[\leq a(t) h(x_0(t)) |g(x_0'(t) - \frac{1}{n}) + r(x_0'(t) - \frac{1}{n})|, \quad \forall t \in (0, 1),\]
\[-x_0''(t) \leq a(t) h(x_0(t)), \quad \forall t \in (0, 1).\]

Integrating from 0 to \(t\), we have
\[I(x_0'(t) - \frac{1}{n}) - I(-\frac{1}{n}) \leq \int_0^t a(s) h(x_0(s)) ds \leq h(R_1) \int_0^t a(s) ds,\]
and
\[I(x_0'(t) - \frac{1}{n}) \leq h(R_1) \int_0^t a(s) ds + I(-\varepsilon).\]

Then
\[x_0'(t) \geq I^{-1}(h(R_1) \int_0^t a(s) ds + I(-\varepsilon));\]
that is,
\[-x_0'(t) \leq -I^{-1}(h(R_1) \int_0^t a(s) ds + I(-\varepsilon)), \quad t \in (0, 1).\] (3.7)

Then
\[x_0(0) = \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 -x_0'(s) ds - \frac{\mu_0 \sum_{i=1}^{m-2} a_i \int_0^\xi a(s) ds}{1 - \sum_{i=1}^{m-2} a_i},\]
\[\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 -I^{-1}\left(h(R_1) \int_0^\xi a(\tau) d\tau + I(-\varepsilon)\right) ds\]
\[+ \frac{\sum_{i=1}^{m-2} a_i}{1 - \sum_{i=1}^{m-2} a_i} \int_0^\xi -I^{-1}(h(R_1) \int_0^\tau a(\tau) d\tau + I(-\varepsilon)) ds\]
\[\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 -I^{-1}\left(h(R_1) \int_0^1 a(\tau) d\tau + I(-\varepsilon)\right) ds\]
\[+ \frac{\sum_{i=1}^{m-2} a_i}{1 - \sum_{i=1}^{m-2} a_i} \int_0^\xi -I^{-1}(h(R_1) \int_0^1 a(\tau) d\tau + I(-\varepsilon)) ds\]
\[= \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s) ds + I(-\varepsilon)).\]

Since \(x_0(0) \geq x_0(t) \geq \gamma \|x_0\|_1 \geq \gamma \delta \|x_0\|_2, x_0(0) \geq \|x_0\| = R_1,\)
\[\frac{R_1}{1 + \sum_{i=1}^{m-2} a_i \xi I^{-1}(h(R_1) \int_0^1 a(s) ds + I(-\varepsilon)}) \leq 1,\] (3.8)

which is a contradiction to \(3.3\). Then \(3.4\) holds.

From Lemma \([2.1]\) for \(n \in \mathbb{N}_0,\)
\[i(A_n, \Omega_1 \cap P, P) = 1.\] (3.9)

Now we show that there exists a set \(\Omega_2\) such that
\[A_n x \not\leq x, \quad \forall x \in \partial \Omega_2 \cap P.\] (3.10)
Choose \(a^* \) with \(0 < a^* < 1 \). Let
\[
N^* = \left(\frac{1}{\gamma a^* \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)ds} \right)^{-1} + 1.
\]

From (H4), there exists \(R_2 > R_1 \) such that
\[
g_1(x, y) \geq N^* x, \quad \forall x \geq R_2, \ y \in \mathbb{R}. \tag{3.11}
\]

Let \(\Omega_2 = \{ x \in C^1[0, 1] : \|x\| < \frac{R_2}{a^*} \} \). Then
\[
Ax \not\in x, \quad \forall x \in \partial \Omega_2 \cap P.
\]

In fact, if there exists \(x_0 \in \partial \Omega \cap P \) with \(x_0 \geq A_n x_0 \). By the definition of the cone and Lemma 2.3, one has
\[
x_0(t) \geq \gamma \|x_0\|_1 \geq \gamma x(0) \geq \gamma \delta \|x_0\|_2, \quad x_0(t) \geq \frac{R_2}{a^*} > R_2, \quad \forall t \in [0, 1],
\]
from (3.11),
\[
\gamma x_0(t) \geq \gamma A_n x_0(t)
\]
\[
\gamma \left(- \int_0^t (t - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i \left(\int_0^1 (1 - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds - \sum_{i=1}^{m-2} a_i \int_0^\xi (\xi - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds \right) \right)
\]
\[
\geq \gamma \left(- \int_0^t (t - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i \left(\int_0^1 (1 - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds - \sum_{i=1}^{m-2} a_i \int_0^\xi (\xi - s)a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds \right) \right)
\]
\[
= \frac{\gamma \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)f(s, x_0(s), -|x'_0(s)| - \frac{1}{n})ds}{1 - \sum_{i=1}^{m-2} a_i}
\]
\[
\geq \frac{\gamma \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)g_1(x_0(s), -|x'_0(s)| - \frac{1}{n})ds}{1 - \sum_{i=1}^{m-2} a_i}
\]
\[
\geq \frac{\gamma \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)dsN^* x_0(s)}{1 - \sum_{i=1}^{m-2} a_i}
\]
\[
\geq a^* \frac{\gamma \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)dsN^* \frac{R_2}{a^*}}{1 - \sum_{i=1}^{m-2} a_i} \geq \frac{R_2}{a^*}.
\]
Then \(\| x_0 \| \geq \gamma \| x_0 \|_1 > \frac{B_2}{a} \), which is a contradiction to \(x_0 \in \partial \Omega_2 \cap P \). Then \((3.10) \) holds. From Lemma 2.2

\[i(A_n, \Omega_2 \cap P, P) = 0. \] (3.12)

which with \((3.9) \) guarantee that

\[i(A_n, (\Omega_2 - \bar{\Omega}_1) \cap P, P) = -1. \] (3.13)

From this equality and \((3.9) \), \(A_n \) has two fixed points with \(x_{n,1} \in \Omega_1 \cap P, x_{n,2} \in (\Omega_2 - \bar{\Omega}_1) \cap P \).

For each \(n \in N_0 \), there exists \(x_{n,1} \in \Omega_1 \cap P \) such that \(x_{n,1} = A_n x_{n,1} \); that is,

\[x_{n,1}(t) = -\int_0^t (t - s)a(s) f(s, x_{n,1}(s)) ds - \frac{1}{n}ds, \quad n \in N_0, \quad t \in (0,1). \]

Now we consider \(\{x_{n,1}(t)\}_{n \in N_0} \) and \(\{x'_{n,1}(t)\}_{n \in N_0} \). Since \(\|x_{n,1}\| \leq R_1 \), it follows that

\[\{x_{n,1}(t)\} \text{ is uniformly bounded on } [0,1]. \] (3.15)

\[\{x'_{n,1}(t)\} \text{ is uniformly bounded on } [0,1]. \] (3.16)

Then

\[\{x_{n,1}(t)\} \text{ is equicontinuous on } [0,1]. \] (3.17)

As in the proof as \((3.6) \),

\[x_{n,1}''(t) + a(t)f(t, x_{n,1}(t), x'_{n,1}(t)) - \frac{1}{n} = 0, \quad 0 < t < 1, \]

\[x'_{n,1}(0) = 0, x_{n,1}(1) = \sum_{i=1}^{m-2} a_i x_{n,1}(\xi_i). \] (3.18)

Now we show that for all \(t_1, t_2 \in [0,1] \),

\[|I(x'_{n,1}(t_2) - \frac{1}{n}) - I(x'_{n,1}(t_1) - \frac{1}{n})| \leq h(R_1) \int_{t_1}^{t_2} a(t)dt. \] (3.19)

From \((3.18) \),

\[-x_{n,1}''(t) = a(t)f(t, x_{n,1}(t), x'_{n,1}(t) - \frac{1}{n}) \]

\[\leq a(t)h(x_{n,1}(t)) [g(x'_{n,1}(t) - \frac{1}{n}) + r(x_{n,1}(t) - \frac{1}{n})], \quad \forall t \in (0,1), \]

and

\[x_{n,1}''(t) = -a(t)f(t, x_{n,1}(t), x'_{n,1}(t) - \frac{1}{n}) \]

\[\geq -a(t)h(x_{n,1}(t)) [g(x'_{n,1}(t) - \frac{1}{n}) + r(x_{n,1}(t) - \frac{1}{n})], \quad \forall t \in (0,1), \]
From (3.15)–(3.17), (3.25) and the Arzela-Ascoli Theorem,

\[\{ \Psi \} \]

are relatively compact on

\[C_{\epsilon} \]

Then, for all

\[t_1, t_2 \in [0, 1] \text{ and } t_1 < t_2, \]

\[
\left| - \int_{t_1}^{t_2} \frac{1}{g(x'_{n,1}(s) - \frac{1}{n}) + r(x'_{n,1}(s) - \frac{1}{n}} d(x_{n,1}(s) - \frac{1}{n}) \right| \leq h(R_1) \int_{t_1}^{t_2} a(t) dt \\
= h(R_1) | \int_{t_1}^{t_2} a(t) dt |,
\]

Inequality (3.19) holds.

Since \(I^{-1} \) is uniformly continuous on \([0, I(-R_1 - \epsilon)]\), for all \(\epsilon > 0 \), there exists \(\epsilon' > 0 \) such that

\[
|I^{-1}(s_1) - I^{-1}(s_2)| < \epsilon, \quad \forall |s_1 - s_2| < \epsilon', \quad s_1, s_2 \in [0, I(-R_1 - \epsilon)].
\]

And (3.19) guarantees that for \(\epsilon' > 0 \), there exists \(\delta' > 0 \) such that

\[
|I(x'_{n,1}(t_2) - \frac{1}{n}) - I(x'_{n,1}(t_1) - \frac{1}{n})| < \epsilon', \quad \forall |t_1 - t_2| < \delta', \quad t_1, t_2 \in [0, 1].
\]

From this inequality and (3.22),

\[
|x'_{n,1}(t_2) - x'_{n,1}(t_1)| = |x'_{n,1}(t_2) - \frac{1}{n} - (x'_{n,1}(t_1) - \frac{1}{n})| \\
= |I^{-1}(I(x'_{n,1}(t_2) - \frac{1}{n})) - I^{-1}(I(x'_{n,1}(t_1) - \frac{1}{n}))| \\
< \epsilon, \quad \forall |t_1 - t_2| < \delta', \quad t_1, t_2 \in [0, 1];
\]

that is,

\[
\{ x'_{n,1}(t) \} \text{ is equicontinuous on } [0, 1].
\]

From (3.15)–(3.17), (3.25) and the Arzela-Ascoli Theorem, \(\{ x_{n,1}(t) \} \) and \(\{ x'_{n,1}(t) \} \) are relatively compact on \(C[0, 1] \), which implies there exists a subsequence \(\{ x_{n,j,1} \} \) of \(\{ x_{n,1} \} \) and function \(x_{0,1}(t) \in C[0, 1] \) such that

\[
\lim_{j \to +\infty} \max_{t \in [0, 1]} |x_{n,j,1}(t) - x_{0,1}(t)| = 0, \quad \lim_{j \to +\infty} \max_{t \in [0, 1]} |x'_{n,j,1}(t) - x'_{0,1}(t)| = 0.
\]

Since \(x'_{n,j,1}(0) = 0, \ x_{n,j,1}(1) = \sum_{i=1}^{m-2} a_i x_{n,j,1}(\xi_i), \ x'_{n,j,1}(t) < 0, \ x_{n,j,1}(t) > 0, \ t \in (0, 1), \ j \in \{1, 2, \ldots\}, \)

\[
x'_{0,1}(0) = 0, \quad x_{0,1}(1) = \sum_{i=1}^{m-2} a_i x_{0,1}(\xi_i), \quad x'_{0,1}(t) \leq 0, \quad x_{0,1}(t) \geq 0, \quad t \in (0, 1).
\]

For \((t, x_{n,j,1}(t), x'_{n,j,1}(t) - \frac{1}{n_j}) \in [0, 1] \times [0, R_1 + \epsilon] \times (-\infty, 0) \), from (H5) there exists a function \(\Psi_{R_1} \in C([0, 1], \mathbb{R}_+) \) such that

\[
f(t, x_{n,j,1}(t), x'_{n,j,1}(t) - \frac{1}{n_j}) ds \geq \Psi_{R_1}(t)(x_{n,j,1}(t))^{\delta}, \quad 0 \leq \delta < 1.
\]
Then, for $n \in N_0$,
\[
x_{n_j,1}(t) = -\int_0^t (t-s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds \right)
\]
\[
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
\geq -\int_0^1 (1-s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds \right)
\]
\[
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
\geq \frac{\sum_{i=1}^{m-2} a_i (1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
\geq \frac{\sum_{i=1}^{m-2} a_i (1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)\Psi_{R_1}(s)(x_{n_j,1}(s))^{\gamma}\,ds
\]
\[
\geq \frac{\sum_{i=1}^{m-2} a_i (1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)\Psi_{R_1}(s)\gamma^{\delta} \,ds \Vert x_{n_j,1} \Vert_{L_1}^{\delta},
\]
which implies
\[
\Vert x_{n_j,1} \Vert_1 \geq \left(\frac{\sum_{i=1}^{m-2} a_i (1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)\Psi_{R_1}(s)\gamma^{\delta} \,ds \right)^{\frac{1}{\delta}},
\]
and
\[
x_{n_j,1}(t) \geq \left(\frac{\sum_{i=1}^{m-2} a_i (1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)\Psi_{R_1}(s)\gamma^{\delta} \,ds \right)^{\frac{1}{\delta}} = a_0 > 0.
\]
Thus
\[
x'_{n_j,1}(t) = -\int_0^t a(s)f(s,x_{n_j,1}(s),x'_{n_j,1}(s) - \frac{1}{n_j})\,ds
\]
\[
\leq -\int_0^t a(s)\Psi_{R_1}(s)(x_{n_j,1}(s))^{\delta}\,ds
\]
\[
\leq -\int_0^t a(s)\Psi_{R_1}(s)d\sigma_0^\delta, \quad t \in [0, 1], n \in N_0.
\]
Consequently,
\[
\inf_{j \geq 1} \min_{s \in \left[\frac{1}{2}, t\right]} |x_{n,j,1}'(s)| > 0, \quad t \in \left[\frac{1}{2}, 1\right),
\]
\[
\inf_{j \geq 1} \min_{s \in [0, \frac{1}{2}]} |x_{n,j,1}'(s)| > 0, \quad t \in (0, \frac{1}{2}].
\]

Since
\[
x_{n,j,1}'(t) - x_{n,j,1}'\left(\frac{1}{2}\right) = -\int_{1/2}^{t} a(s)f(s, x_{n,j,1}(s), x_{n,j,1}'(s) - \frac{1}{n_j}) ds, \quad t \in (0, 1),
\]
and
\[
f(t, x_{n,j,1}(t), x_{n,j,1}'(t) - \frac{1}{n_j}) \leq h(x_{n,j,1}(t))[g(x_{n,j,1}'(t) - \frac{1}{n_j}) + r(x_{n,j,1}'(t) - \frac{1}{n_j})]
\leq h\left(\frac{R_1}{\gamma}\right)[g(-\int_{0}^{t} a(s)\Psi R_{i}(s) dsa_{0}^{c}) + r\left(\frac{R_1}{\gamma\delta} - \varepsilon\right)],
\]
letting \(j \to +\infty\), the Lebesgue Dominated Convergence Theorem guarantees that
\[
x_{0,1}'(t) - x_{0,1}'\left(\frac{1}{2}\right) = -\int_{1/2}^{t} a(s)f(s, x_{0,1}(s), x_{0,1}'(s)) ds, \quad t \in (0, 1). \tag{3.27}
\]

Differentiating, we have
\[
x_{0,1}''(t) + a(t)f(t, x_{0,1}(t), x_{0,1}'(t)) = 0, \quad 0 < t < 1,
\]
and from (3.26) \(x_{0,1}(t)\) is a positive solution of (1.1) with \(x_{0,1} \in C^4[0, 1] \cap C^2(0, 1)\).

For the set \(\{x_{n,2}\}_{n \in \mathbb{N}_0} \subseteq \left(\Omega_2 - \Omega_1\right) \cap P\), the proof is as that for the set \(\{x_{n,1}\}_{n \in \mathbb{N}_0}\) with \(\lim_{j \to +\infty} x_{n,2} = x_{0,2} \in C^4[0, 1] \cap C^2(0, 1)\). Moreover, \(x_{0,2}\) is a positive solution to (1.1).

\[\square\]

Example 3.1 In (1.1), let \(f(t, u, z) = \mu[1 + (-z)^{-a}][1 + u^b + u^d]\) and \(a(t) \equiv 1\) with \(0 < a < 1, b > 1, 0 < d < 1\) and \(\mu > 0\). If
\[
\mu < \sup_{c \in \mathbb{R}^+} I\left(-\frac{c(1 - \sum_{i=1}^{m-2} a_i)}{1 + \sum_{i=1}^{m-2} a_i} \right) \left(\frac{1}{1 + c^b + c^d}\right). \tag{3.28}
\]

Then (1.1) has at least two positive solutions \(x_{0,1}, x_{0,2} \in C^4[0, 1] \cap C^2(0, 1)\).

We apply Theorem 3.1 with \(g(z) = (-z)^{-a}, r(z) = 1, h(u) = \mu(1 + u^b + u^d), \Psi(t) = \mu, g_1(u, z) = \mu u^b\). (H1), (H2), (H4), (H5) hold. Also
\[
\sup_{c \in \mathbb{R}^+} c \left(\frac{\sum_{i=1}^{m-2} a_i^{1+c} + 1}{1 + \sum_{i=1}^{m-2} a_i} \right) I^{-1}\left(\frac{c}{1 + c^b + c^d}\right)
\leq \sup_{c \in \mathbb{R}^+} c \left(\frac{\sum_{i=1}^{m-2} a_i^{1+c} + 1}{1 + \sum_{i=1}^{m-2} a_i} \right) I^{-1}\left(\mu (1 + c^b + c^d)\right),
\]
and (3.28) guarantees that (H3) holds.
4. Singularities at $x' = 0$ and $x = 0$

In this section the nonlinearity f may be singular at $x' = 0$ and $x = 0$. We assume that the following conditions hold.

(P1) $a(t) \in C[0, 1], a(t) > 0, t \in (0, 1)$;

(P2) $f(t, u, z) \leq [h(u) + \omega(u)]g(z) + r(z)$, where $f \in C([0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-, \mathbb{R}_+), g(z) > 0$ continuous and non-increasing on $(-\infty, 0], \omega(u) > 0$ continuous and non-increasing on $[0, +\infty), h(u) \geq 0$ continuous and nondecreasing on $\mathbb{R}_+, r(z) > 0$ continuous and nondecreasing on \mathbb{R}_-;

(P3) \[
\sup_{c \in \mathbb{R}_+} \frac{c}{1 - \sum_{i=1}^{m-2} a_i \xi_i + 1} (I^{-1}[-\max_{t \in [0, 1]} a(t) h(R_1 + R_1 \omega(s)ds)]) > 1,
\]

where $I(z) = \int_0^z \frac{udz}{g(u) + r(u)}, z \in \mathbb{R}_-, \int_0^a \omega(s)ds < +\infty$;

(P4) There exists a function $g_1 \in C([0, +\infty) \times (-\infty, 0], [0, +\infty))$, such that $f(t, u, z) \geq g_1(u, z), \forall (t, u, z) \in [0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-$, and $\lim_{u \to +\infty} \frac{g_1(u, z)}{u} = +\infty$, uniformly for $z \in \mathbb{R}_-$;

(P5) There exists a function $\Psi_H \in C([0, 1], \mathbb{R}_+]$ with $f(t, u, z) \geq \Psi_H(t)$, for all $(t, u, z) \in [0, 1] \times [0, H] \times [-H, 0]$.

For $n \in \{1, 2, \ldots\}, x \in P, t \in [0, 1]$, define operator

\[
(A_n x)(t) = -\int_0^t (t - s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)| - \frac{1}{n})ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)| - \frac{1}{n})ds \right. \\
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)| - \frac{1}{n})ds \bigg).
\]

Theorem 4.1. Suppose (P1)–(P5) hold. Then (1.1) has at least two positive solutions $x_{0,1}, x_{0,2} \in C^1[0, 1] \cap C^2(0, 1)$ and $x_{0,1}(t), x_{0,2}(t) > 0, t \in [0, 1]$.

Proof. Choose $R_1 > 0$ such that

\[
\frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i + 1} (I^{-1}[-\max_{t \in [0, 1]} a(t) h(R_1 + R_1 \omega(s)ds)]) > 1.
\]

From the continuity of I^{-1} and h, we can choose $\epsilon > 0$ and $\epsilon < R_1$ such that

\[
\frac{1}{1 - \sum_{i=1}^{m-2} a_i \xi_i + 1} (I^{-1}[I(-\epsilon) - \max_{t \in [0, 1]} a(t) h(R_1 + \epsilon) + \int_0^{R_1 + \epsilon} \omega(s)ds)]) > 1
\]

is greater than $1, \forall n \in \{1, 2, \ldots\}$ with $\frac{1}{n_0} < \min(\epsilon, \delta/2)$ and let $N_0 = \{n_0, n_0 + 1, \ldots\}$. Then Lemma 2.4 guarantees that for $n \in N_0, A_n : P \to P$ is a completely continuous operator. Let

\[
\Omega_1 = \{x \in C^1[0, 1] : \|x\| < R_1\}.
\]

We show that

\[
x \neq \mu A_n x, \quad \forall x \in P \cap \partial \Omega_1, \mu \in (0, 1], n \in N_0.
\]
In fact, if there exists an \(x_0 \in P \cap \partial \Omega_1 \) and \(\mu_0 \in (0, 1] \) with \(x_0 = \mu_0 A_n x_0 \).

\[
x_0(t) = -\mu_0 \int_0^t (t-s)a(s)f(s, x_0(s) + \frac{1}{n}, -|x_0'(s)| - \frac{1}{n})ds
\]

\[
+ \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s, x_0(s) + \frac{1}{n}, -|x_0'(s)| - \frac{1}{n})ds
\right)
\]

\[
- \sum_{i=1}^{m-2} a_i \int_0^t (\xi_i - s)a(s)f(s, x_0(s) + \frac{1}{n}, -|x_0'(s)| - \frac{1}{n})ds, \quad t \in [0, 1].
\]

Then

\[
x_0'(t) = -\mu_0 \int_0^t a(s)f(s, x_0(s) + \frac{1}{n}, -|x_0'(s)| - \frac{1}{n})ds, \quad \forall t \in [0, 1]. \tag{4.5}
\]

Obviously, \(x_0'(t) \leq 0, \quad t \in (0, 1) \), and since \(x_0(1) > 0, \quad x_0(t) > 0, \quad t \in [0, 1] \). Differentiating (4.5), we have

\[
x_0''(t) + \mu_0 a(t)f(t, x_0(t) + \frac{1}{n}, x_0'(t) - \frac{1}{n}) = 0, \quad 0 < t < 1,
\]

\[
x_0'(0) = 0, \quad x_0(1) = \sum_{i=1}^{m-2} a_i x_0(\xi_i). \tag{4.6}
\]

Then, for \(t \in (0, 1) \),

\[
-x_0''(t) = \mu_0 a(t)f(t, x_0(t) + \frac{1}{n}, x_0'(t) - \frac{1}{n})
\]

\[
\leq a(t) [h(x_0(t) + \frac{1}{n}) + \omega(x_0(t) + \frac{1}{n})] [g(x_0'(t) - \frac{1}{n}) + r(x_0'(t) - \frac{1}{n})],
\]

and

\[
\frac{-x_0''(t)}{g(x_0(t) - \frac{1}{n}) + r(x_0'(t) - \frac{1}{n})} \leq a(t) [h(x_0(t) + \frac{1}{n}) + \omega(x_0(t) + \frac{1}{n})], \quad \forall t \in (0, 1),
\]

and

\[
\frac{-x_0''(t)(x_0'(t) - \frac{1}{n})}{g(x_0(t) - \frac{1}{n}) + r(x_0'(t) - \frac{1}{n})} \geq a(t) [h(R_1 + \epsilon) + \omega(x_0(t) + \frac{1}{n}(1-t))] (x_0'(t) - \frac{1}{n})
\]

\[
\geq a(t) [h(R_1 + \epsilon) + \omega(x_0(t) + \frac{1}{n}(1-t))] (x_0'(t) - \frac{1}{n}) \tag{4.7}
\]

Integrating from 0 to \(t \), we have

\[
I(x_0'(t) - \frac{1}{n}) - I(-\frac{1}{n})
\]

\[
\geq \int_0^t a(s) [h(R_1 + \epsilon)(x_0'(s) - \frac{1}{n}) + \omega(x_0(s) + \frac{1}{n}(1-s))(x_0'(s) - \frac{1}{n})]ds
\]

\[
\geq \max_{t \in [0,1]} a(t) [h(R_1 + \epsilon) \left(\int_0^t x_0'(s)ds - \int_0^t \frac{1}{n}ds \right) + \int_0^t \omega(x_0(s) + \frac{1}{n}(1-s))dx_0(s)
\]

\[
+ \frac{1}{n}(1-s)).
\]
\[\geq - \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds, \]

\[I(x'_0(t) - \frac{1}{n}) \geq I(-\epsilon) - \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds). \]

Then

\[x'_0(t) \geq I^{-1}\left(I(-\epsilon) - \max_{t \in [0,1]} a(t) \{ h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds \} \right); \]

that is,

\[-x'_0(t) \leq -I^{-1}\left(I(-\epsilon) - \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds) \right), \quad t \in (0,1). \]

Since

\[x_0(0) = \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \int_0^{1/n} -x'_0(s)ds - \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \int_0^{\epsilon} -x'_0(s)ds \]

\[\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^{1/n} -I^{-1}\left(I(-\epsilon) - \max_{t \in [0,1]} a(t) \{ h(R_1 + \epsilon)(R_1 + \epsilon) \right.

\[+ \int_0^{R_1+\epsilon} \omega(s)ds \left. \right)ds + \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \int_0^{\epsilon} -I^{-1}\left(I(-\epsilon) \right. \]

\[- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds) \right)ds \]

\[= \frac{1 + \sum_{i=1}^{m-2} a_i \xi_i}{1 - \sum_{i=1}^{m-2} a_i} \left(-I^{-1}\left(I(-\epsilon) - \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)(R_1 + \epsilon) \right. \]

\[+ \int_0^{R_1+\epsilon} \omega(s)ds \right) \right). \]

Since \(x_0(0) \geq x_0(t) \geq \gamma \| x_0 \|_1 \geq \gamma \delta \| x_0 \|_2, \) \(x_0(0) \geq \| x_0 \| = R_1. \) So

\[\frac{R_1}{1 - \sum_{i=1}^{m-2} a_i (I^{-1}[I(-\epsilon) - \max_{t \in [0,1]} a(t)](h(R_1 + \epsilon)(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds))} \leq 1, \]

which is a contradiction to (4.3). Then (4.4) holds.

From Lemma 2.1, for \(n \in N_0, \)

\[i(A_n, \Omega_1 \cap P, P) = 1. \] (4.10)

Now we show that there exists a set \(\Omega_2 \) such that

\[A_n x \not\leq x, \quad \forall x \in \partial \Omega_2 \cap P. \] (4.11)

Choose \(a^*, N^* \) as in section 3. Let

\[\Omega_2 = \{ x \in C^1[0,1] : \| x \| < \frac{R_2}{a^*} \}. \]

Then

\[A_n x \not\leq x, \quad \forall x \in \partial \Omega_2 \cap P. \]
In fact, if there exists \(x_0 \in \partial \Omega_2 \cap P \) with \(x_0 \geq A_n x_0 \). By the definition of the cone and Lemma 2.3 one has

\[
x_0(t) \geq \gamma \|x_0\|_1 \geq \gamma x(0) \geq \gamma \delta \|x_0\|_2,
\]

and so \(x_0(t) \geq \frac{R_2}{a^*} > R_2 \), for all \(t \in [0, 1] \), \(x_0(t) + \frac{1}{a} > R_2 \), from (3.11),

\[
\gamma x_0(t) \geq \gamma A_n x_0(t)
\]

\[
= \gamma \left(- \int_0^t (t - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\right.
\]

\[
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\right.
\]

\[
- \sum_{i=1}^{m-2} a \int_0^t (\xi - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\left) \right)
\]

\[
\geq \gamma \left(- \int_0^t (t - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\right.
\]

\[
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\right.
\]

\[
- \sum_{i=1}^{m-2} a \int_0^t (\xi - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\left) \right)
\]

\[
\geq \gamma \left(\sum_{i=1}^{m-2} a_i \int_0^1 a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\right.
\]

\[
- \sum_{i=1}^{m-2} a \int_0^t (\xi - s) a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\left) \right)
\]

\[
= \gamma \sum_{i=1}^{m-2} a_i (1 - \xi) \int_0^1 a(s) f(s, x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\]

\[
\geq \gamma \sum_{i=1}^{m-2} a_i (1 - \xi) \int_0^1 a(s) g(x_0(s) + \frac{1}{n} - |x'_0(s)| - \frac{1}{n}) ds
\]

\[
\geq \gamma \sum_{i=1}^{m-2} a_i (1 - \xi) \int_0^1 a(s) ds N^* x_0(s)
\]

\[
\geq a^* \gamma \sum_{i=1}^{m-2} a_i (1 - \xi) \int_0^1 a(s) ds N^* \frac{R_2}{a^*} > \frac{R_2}{a^*}.
\]

Then \(\|x_0\| \geq \|x_0\|_1 > \frac{R_2}{a^*} \), which is a contradiction to \(x_0 \in \partial \Omega_2 \cap P \). Then (4.11) holds.

From Lemma 2.2

\[
i(A_n, \Omega_2 \cap P, P) = 0. \quad (4.12)
\]

This equality and (4.10) guarantee,

\[
i(A_n, (\Omega_2 - \bar{\Omega}_1) \cap P, P) = -1. \quad (4.13)
\]

From this equality and (4.10), \(A_n \) has two fixed points with \(x_{n,1} \in \Omega_1 \cap P, x_{n,2} \in (\Omega_2 - \bar{\Omega}_1) \cap P \). For each \(n \in N_0 \), there exists \(x_{n,1} \in \Omega_1 \cap P \) with \(x_{n,1} = A_n x_{n,1} \);
that is,

\[x_{n,1}(t) = - \int_0^t (t-s)a(s)f(s,x_{n,1}(s) + \frac{1}{n},-x'_{n,1}(s)) - \frac{1}{n} ds \]

\[+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s,x_{n,1}(s) + \frac{1}{n},-x'_{n,1}(s)) - \frac{1}{n} ds \right) \]

\[- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)a(s)f(s,x_{n,1}(s) + \frac{1}{n},-x'_{n,1}(s)) - \frac{1}{n} ds \].

(4.14)

As in the same proof of (3.5), \(x'_n(t) \leq 0, t \in (0,1) \) and

\[x'_n(t) = - \int_0^t a(s)f(s,x_{n,1}(s) + \frac{1}{n},x'_{n,1}(s)) - \frac{1}{n} ds, \quad n \in N_0, \ t \in (0,1). \]

Now we consider \(\{x_n(t)\}_{n \in N_0} \) and \(\{x'_n(t)\}_{n \in N_0} \), since \(\|x_n\| \leq R_1 \), it follows that

\[\{x_n(t)\} \text{ is uniformly bounded on } [0,1], \quad (4.15) \]

\[\{x'_n(t)\} \text{ is uniformly bounded on } [0,1]. \quad (4.16) \]

Then

\[\{x_n(t)\} \text{ is equicontinuous on } [0,1]. \quad (4.17) \]

As in the same proof of (3.6),

\[x''_n(t) + a(t)f(t,x_{n,1}(t) + \frac{1}{n},x'_{n,1}(t)) - \frac{1}{n} = 0, \quad 0 < t < 1, \]

\[x'_n(0) = 0, \quad x_{n,1}(1) = \sum_{i=1}^{m-2} a_i \xi_i. \quad (4.18) \]

Now we show for all \(t_1, \ t_2 \) in \([0,1]\),

\[|I(x'_{n,1}(t_2) - \frac{1}{n}) - I(x'_{n,1}(t_1) - \frac{1}{n})| \]

\[\leq \max_{t \in [0,1]} a(t) [h(R_1 + \epsilon)(|x_{n,1}(t_2) - x_{n,1}(t_1)| + |t_2 - t_1|) \]

\[+ | \int_{x_{n,1}(t_1) + \frac{1}{n}(1-t_1)}^{x_{n,1}(t_2) + \frac{1}{n}(1-t_2)} \omega(s) ds|]. \quad (4.19) \]

From (4.18), it follows that for \(t \in (0,1), \)

\[-x''_n(t) = a(t)f(t,x_{n,1}(t) + \frac{1}{n},x'_{n,1}(t) - \frac{1}{n}) \]

\[\leq a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})][g(x'_{n,1}(t) - \frac{1}{n}) + r(x'_{n,1}(t) - \frac{1}{n})], \]

\[x''_n(t) = -a(t)f(t,x_{n,1}(t) + \frac{1}{n},x'_{n,1}(t) - \frac{1}{n}) \]

\[\geq -a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})][g(x'_{n,1}(t) - \frac{1}{n}) + r(x'_{n,1}(t) - \frac{1}{n})], \]
and so for \(t \in (0, 1) \),

\[
-x''_{n,1}(t)(x'_{n,1}(t) - \frac{1}{n}) \frac{g(x'_{n,1}(t) - \frac{1}{n})}{g(x'_{n,1}(t) \frac{1}{n})} + r(x'_{n,1}(t) - \frac{1}{n}) \\
\geq a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})](x'_{n,1}(t) - \frac{1}{n}) \\
\geq a(t)[h(R_1 + \epsilon)(x'_{n,1}(t) - \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n}(1 - t))(x_{n,1}(t) + \frac{1}{n}(1 - t))'].
\]

(4.20)

Then, for all \(t_1, t_2 \in [0, 1] \) and \(t_1 < t_2 \),

\[
I(x'_{n,1}(t_2) - \frac{1}{n}) - I(x'_{n,1}(t_1) - \frac{1}{n}) \\
\geq \max_{t \in [0,1]} a(t)[h(R_1 + \epsilon)(\int_{t_1}^{t_2} x'_{n,1}(s)ds - \frac{1}{n}(t_2 - t_1)) + \int_{x_{n,1}(t_1) + \frac{1}{n}(1 - t_2)}^{x_{n,1}(t_2) + \frac{1}{n}(1 - t_1)} \omega(s)ds] \\
\geq - \max_{t \in [0,1]} a(t)[h(R_1 + \epsilon)(|x_{n,1}(t_2) - x_{n,1}(t_1)| + |t_2 - t_1|) \\
+ \int_{x_{n,1}(t_1) + \frac{1}{n}(1 - t_1)}^{x_{n,1}(t_2) + \frac{1}{n}(1 - t_2)} \omega(s)ds].
\]

(4.21)

Therefore, (4.19) holds. Since \(I^{-1} \) is uniformly continuous on \([0, I(-R_1 - \epsilon)]\), for all \(\epsilon > 0 \), there exists \(\epsilon' > 0 \) such that

\[
|I^{-1}(s_1) - I^{-1}(s_2)| < \epsilon', \forall |s_1 - s_2| < \epsilon', s_1, s_2 \in [0, I(-R_1 - \epsilon)].
\]

(4.22)

Then (4.19) guarantees that for \(\epsilon' > 0 \), there exists \(\delta' > 0 \) such that

\[
|x'_{n,1}(t_2) - \frac{1}{n}) - I(x'_{n,1}(t_1) - \frac{1}{n})| < \epsilon', \ \forall |t_1 - t_2| < \delta', t_1, t_2 \in [0, 1].
\]

(4.23)

From this inequality and (4.22),

\[
|x'_{n,1}(t_2) - x'_{n,1}(t_1)| = |x'_{n,1}(t_2) - \frac{1}{n} - (x'_{n,1}(t_1) - \frac{1}{n})| \\
= |I^{-1}(I(x'_{n,1}(t_2) - \frac{1}{n})) - I^{-1}(I(x'_{n,1}(t_1) - \frac{1}{n}))| \\
< \epsilon', \ \forall |t_1 - t_2| < \delta', t_1, t_2 \in [0, 1];
\]

(4.24)
From (4.15)–(4.17), (4.25) and the Arzela-Ascoli Theorem, \(\{x_{n,1}(t)\} \) and \(\{x'_{n,1}(t)\} \) are relatively compact on \(C[0,1] \), which implies, there exists a subsequence \(\{x_{n,j}\} \) of \(\{x_{n,1}\} \) and function \(x_{0,1}(t) \in C[0,1] \) such that

\[
\lim_{j \to +\infty} \max_{t \in [0,1]} |x_{n,j}(t) - x_{0,1}(t)| = 0, \quad \lim_{j \to +\infty} \max_{t \in [0,1]} |x'_{n,j}(t) - x'_{0,1}(t)| = 0.
\]

Since \(x'_{n,1}(0) = 0 \), \(x_{n,j}(1) = \sum_{i=1}^{m-2} a_i x_{n,j}(\xi_i) \), \(x'_{n,1}(t) < 0 \), \(x_{n,j}(t) > 0 \), \(t \in (0,1), j \in \{1,2,\ldots\} \),

\[
x'_{0,1}(0) = 0, x_{0,1}(1) = \sum_{i=1}^{m-2} a_i x_{0,1}(\xi_i), x'_{0,1}(t) \leq 0, x_{0,1}(t) \geq 0, \quad t \in (0,1).
\]

For \((t,x_{n,j}(t) + \frac{1}{n_j}, x'_{n,j}(t) - \frac{1}{n_j}) \in [0,1] \times [0,R_1 + \epsilon] \times (-\infty,0) \), from (P5) there exists a function \(\Psi_{R_1} \in C([0,1],\mathbb{R}_+) \) such that

\[
f(t,x_{n,j}(t) + \frac{1}{n_j}, x'_{n,j}(t) - \frac{1}{n_j})ds \geq \Psi_{R_1}(t).
\]

Then, for \(n \in \mathbb{N}_0 \),

\[
x_{n,j}(t) = -\int_0^t (t-s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \right) \\
\geq -\int_0^1 (1-s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
- \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \right) \\
\geq \sum_{i=1}^{m-2} a_i \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 (1-s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
- \sum_{i=1}^{m-2} a_i \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^{\xi_i} (\xi_i - s)a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
= \sum_{i=1}^{m-2} a_i \frac{(1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds \\
\geq \sum_{i=1}^{m-2} a_i \frac{(1 - \xi_i)}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 a(s)\Psi_{R_1}(s)ds = a_0,
\]

and

\[
x'_{n,j}(t) = -\int_0^t a(s)f(s,x_{n,j}(s) + \frac{1}{n_j}, x'_{n,j}(s) - \frac{1}{n_j})ds.
\]
Then (4.28) guarantees that (P3) holds.

We apply Theorem 4.1 with $\mu < $ sup $a(t)(c + c^{1-d} + e^{1+b})$. Then equation (1.1) has at least two positive solutions $x_{0,1}, x_{0,2} \in C^1[0,1] \cap C^2(0,1).$
5. Singularities at \(x = 0\) but not \(x' = 0\)

In this section the nonlinearity \(f\) may be singular at \(x = 0\), but not at \(x' = 0\). We assume that the following conditions hold.

\(\text{(S1)}\) \(a(t) \in C([0, 1])\), \(a(t) > 0\), \(t \in (0, 1)\);

\(\text{(S2)}\) \(f(t, u, z) \leq \frac{1}{2} [h(u) + \omega(u)] r(z)\), where \(f \in C([0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-\), \(\omega(u) > 0\) continuous and non-increasing on \([0, +\infty)\), \(h(u) \geq 0\) continuous and non-decreasing on \(\mathbb{R}_+\), \(r(z) > 0\) continuous and non-decreasing on \(\mathbb{R}_-\);

\(\text{(S3)}\)
\[
\sup_{c \in \mathbb{R}_+} \frac{c}{\sum_{i=1}^{m-2} a_i \xi_i + 1} (I^{-1} [- \max_{t \in [0, 1]} a(t)(ch(c) + \int_0^t \omega(s)ds)]) > 1,
\]
where \(I(z) = \int_0^z \frac{adu}{r(u)}\), \(z \in \mathbb{R}_-\), \(\int_0^z \omega(s)ds < +\infty\), \(a \in \mathbb{R}_+\);

\(\text{(S4)}\) There exists a function \(g_1 \in C([0, +\infty) \times (-\infty, 0], [0, +\infty))\) such that \(f(t, u, z) \geq g_1(u, z, \forall (t, u, z) \in [0, 1] \times \mathbb{R}_+ \times \mathbb{R}_-\), and \(\lim_{u \to +\infty} \frac{g_1(u, z)}{u} = +\infty\), uniformly for \(z \in \mathbb{R}_-\);

\(\text{(S5)}\) There exists a function \(\Psi_H \in C([0, 1], \mathbb{R}_+\) and a constant \(0 \leq \delta\) such that \(f(t, u, z) \geq \Psi_H(t)(-\delta)^2\), for all \((t, u, z) \in [0, 1] \times [0, H] \times [-H, 0]\).

For \(n \in \{1, 2, \ldots\}\), \(x \in P\), define operator

\[
(A_n)x(t) = - \int_0^t (t-s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)|)ds + \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)|)ds \right) - \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s) a(s) f(s, x(s) + \frac{1}{n}, -|x'(s)|)ds, \quad t \in [0, 1].
\]

Theorem 5.1. Suppose \((\text{S1})\)–\((\text{S5})\) hold. Then \((1.1)\) has at least two positive solutions \(x_{0,1}, x_{0,2}\) in \(C^1([0, 1])\) \(\cap C^2(0, 1)\) with \(x_{0,1}(t), x_{0,2}(t) > 0\), \(t \in [0, 1]\).

Proof. Choose \(R_1 > 0\) such that

\[
R_1 \left(\frac{\sum_{i=1}^{m-2} a_i \xi_i + 1}{1 - \sum_{i=1}^{m-2} a_i} (I^{-1} [- \max_{t \in [0, 1]} a(t)(R_1 h(R_1) + \int_0^{R_1} \omega(s)ds)]) \right) > 1.
\]
From the continuity of \(I^{-1}\) and \(h\), we can choose \(\epsilon > 0\) and \(\epsilon < R_1\) such that

\[
R_1 \left(\frac{\sum_{i=1}^{m-2} a_i \xi_i + 1}{1 - \sum_{i=1}^{m-2} a_i} (I^{-1} [- \max_{t \in [0, 1]} a(t)(R_1 h(R_1 + \epsilon) + \int_0^{R_1+\epsilon} \omega(s)ds)]) \right) > 1.
\]
Let \(n_0 \in \{1, 2, \ldots\}\) with \(\frac{1}{n_0} < \min(\epsilon, \delta/2)\) and let \(N_0 = \{n_0, n_0 + 1, \ldots\}\). Then Lemma 2.4 guarantees that for \(n \in N_0\), \(A_n : P \to P\) is a completely continuous operator. Let \(\Omega_1 = \{x \in C^1([0, 1]) : \|x\| < R_1\}\).

We show that

\[
x \neq \mu A_n x, \quad \forall x \in P \cap \partial \Omega_1, \quad \mu \in (0, 1], \quad n \in N_0.
\]
In fact, if there exists an \(x_0 \in P \cap \partial \Omega_1 \) and \(\mu_0 \in (0, 1] \) with \(x_0 = \mu_0 A_n x_0 \).

\[
x_0(t) = -\mu_0 \int_0^t (t - s)a(s)f(s, x_0(s)) + \frac{1}{n}, -|x_0'(s)|)ds
\]
\[
+ \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x_0(s)) + \frac{1}{n}, -|x_0'(s)|)ds
\]
\[
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s, x_0(s)) + \frac{1}{n}, -|x_0'(s)|)ds \right).
\]

Then

\[
x_0'(t) = -\mu_0 \int_0^t a(s)f(s, x_0(s)) + \frac{1}{n}, -|x_0'(s)|)ds, \quad \forall t \in [0, 1]. \tag{5.5}
\]

Obviously, \(x_0'(t) \leq 0, \) \(t \in (0, 1) \), and since \(x_0(1) > 0 \), \(x_0(t) > 0, t \in [0, 1] \). Differentiating (5.5), we have

\[
x_0''(t) + \mu_0 a(t)f(t, x_0(t)) + \frac{1}{n}, x_0'(t)) = 0, 0 < t < 1,
\]
\[
x_0'(0) = 0, \quad x_0(1) = \sum_{i=1}^{m-2} a_i x_0(\xi_i). \tag{5.6}
\]

and

\[
-x_0''(t) = \mu_0 a(t)f(t, x_0(t)) + \frac{1}{n}, x_0'(t)) \leq a(t)[h(x_0(t) + \frac{1}{n}) + \omega(x_0(t) + \frac{1}{n})]r(x_0'(t)), \quad \forall t \in (0, 1).
\]

Then

\[
\frac{-x_0''(t)}{r(x_0'(t))} \leq a(t)[h(x_0(t) + \frac{1}{n}) + \omega(x_0(t) + \frac{1}{n})], \quad \forall t \in (0, 1),
\]

and

\[
\frac{-x_0''(t)x_0'(t)}{r(x_0'(t))} \geq a(t)[h(R_1 + \epsilon) + \omega(x_0(t) + \frac{1}{n})]x_0'(t)
\]
\[
\geq a(t)[h(R_1 + \epsilon) + \omega(x_0(t) + \frac{1}{n})]x_0'(t).
\]

Integrating from 0 to \(t \), we have

\[
I(x_0'(t)) \geq \int_0^t a(s)[h(R_1 + \epsilon)x_0'(s)]ds + \omega(x_0(s) + \frac{1}{n})x_0'(s)|ds
\]
\[
\geq \max_{t \in [0, 1]} a(t) \int_0^t [h(R_1 + \epsilon)x_0'(s)\omega(x_0(s) + \frac{1}{n})]ds
\]
\[
\geq - \max_{t \in [0, 1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^t \omega(x_0(s) + \frac{1}{n})d(x_0(s) + \frac{1}{n}))
\]
\[
= - \max_{t \in [0, 1]} a(t)(h(R_1 + \epsilon)R_1 + \frac{1}{x_0(t)+\frac{1}{n}})\omega(s)ds
\]
\[
\geq - \max_{t \in [0, 1]} a(t)(h(R_1 + \epsilon)R_1 + \int_{(0, t)+\frac{1}{n}}^R \omega(s)ds)
\]
and
\[I(x_0'(t)) \geq - \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds). \]

Then
\[x_0'(t) \geq I^{-1}(- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds)); \]
that is,
\[-x_0'(t) \leq -I^{-1}(- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds)), \quad t \in (0,1). \] (5.7)

Since \(x_0(0) \)
\[= \frac{\mu_0}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 -x_0'(s)ds - \frac{\mu_0 \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} -x_0'(s)ds}{1 - \sum_{i=1}^{m-2} a_i} \]
\[\leq \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 -I^{-1}(- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds))ds \]
\[+ \frac{\sum_{i=1}^{m-2} a_i \int_0^{\xi_i} -I^{-1}(- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds))ds}{1 - \sum_{i=1}^{m-2} a_i} \]
\[= \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \xi_i (I^{-1}(- \max_{t \in [0,1]} a(t)(h(R_1 + \epsilon)R_1 + \int_0^{R_1 + \epsilon} \omega(s)ds)), \]
\[x_0(0) \geq x_0(t) \geq \gamma_1 \| x_0 \| \geq \gamma_2 \| x_0 \|_2 \geq x_0(0) \geq \| x_0 \| = R_1. \] (5.8)

So
\[R_1 \]
\[\leq \frac{1 - \sum_{i=1}^{m-2} a_i}{1 - \sum_{i=1}^{m-2} a_i} (I^{-1}[- \max_{t \in [0,1]} a(t)(R_1 h(R_1 + \epsilon) + \int_0^{R_1 + \epsilon} \omega(s)ds)] \]
which is a contradiction to (5.3). Then (5.4) holds. From Lemma 2.1 for \(n \in N_0 \),
\[i(A_n, \Omega_1 \cap P, P) = 1. \] (5.10)

Now we show that there exists a set \(\Omega_2 \) such that
\[A_n x \not\subset x, \quad \forall x \in \partial \Omega_2 \cap P. \] (5.11)

Choose \(a^*, N^* \) as in section 3. Let
\[\Omega_2 = \{ x \in C^1[0,1] : \| x \| < \frac{R_2}{a^*} \}. \]

Then
\[A_n x \not\subset x, \quad \forall x \in \partial \Omega_2 \cap P. \]

In fact, if there exists \(x_0 \in \partial \Omega_2 \cap P \) with \(x_0 \geq A_n x_0 \), by the definition of the cone and Lemma 2.3 one has
\[x_0(t) \geq \gamma \| x_0 \|_1 \geq \gamma x(0) \geq \gamma \| x_0 \|_2, \]
\[x_0(t) \geq \frac{R_2}{a^*} > R_2 \] for all \(t \in [0,1] \). Then \(x_0(t) + \frac{1}{n} > R_2 \). From (3.11),
\[\gamma x_0(t) \geq \gamma A_n x_0(t) \]
\[= \gamma \left(- \int_0^t (t-s)a(s)f(s, x_0(s) + \frac{1}{n}, x_0'(s))ds \right) \]
\[\frac{1}{+1-\sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\int_0^t (t-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\int_0^t \left(t-s \right) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\int_0^t \left(t-s \right) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[= \gamma \left(-\sum_{i=1}^{m-2} \int_0^1 a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[= \gamma \left(-\sum_{i=1}^{m-2} \int_0^1 a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[\geq \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[= \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[= \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]
\[= \gamma \left(-\sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_0(s) + \frac{1}{n}, x_0'(s)) ds \right) \]

that is, \(\|x_0\| \geq \gamma \|x_0\|_1 > \frac{R_2}{a^*} \), which is a contradiction to \(x_0 \in \partial \Omega_2 \cap P \). Then (5.11) holds. From Lemma 2.2

\[i(A_n, \Omega_2 \cap P, P) = 0. \] (5.12)

This equality and (5.10) guarantee

\[i(A_n, (\Omega_2 - \tilde{\Omega}_1 \cap P, P) = -1. \] (5.13)

From this equality and (5.10), \(A_n \) has two fixed points with \(x_{n,1} \in \Omega_1 \cap P, x_{n,2} \in (\Omega_2 - \tilde{\Omega}_1) \cap P \).

For each \(n \in N_0 \), there exists \(x_{n,1} \in \Omega_1 \cap P \) such that \(x_{n,1} = A_n x_{n,1} \); that is, for \(t \in [0, 1] \),

\[x_{n,1}(t) = -\int_0^t (t-s) a(s) f(s, x_{n,1}(s) + \frac{1}{n}, -|x_{n,1}'(s)|) ds \]
\[+ \frac{1}{1-\sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1-s) a(s) f(s, x_{n,1}(s) + \frac{1}{n}, -|x_{n,1}'(s)|) ds \right) \]
\[- \sum_{i=1}^{m-2} a_i \int_0^1 (1-s) a(s) f(s, x_{n,1}(s) + \frac{1}{n}, -|x_{n,1}'(s)|) ds \].
As in the proof of (3.5), \(x''_{n,1}(t) \leq 0, \ t \in (0, 1) \) and
\[
x''_{n,1}(t) = - \int_0^t a(s)f(s, x_{n,1}(s) + \frac{1}{n}, x'_{n,1}(s))ds, \quad n \in N_0, \ t \in (0, 1).
\]
Now we consider \(\{x_{n,1}(t)\}_{n \in N_0} \) and \(\{x'_{n,1}(t)\}_{n \in N_0} \), since \(\|x_{n,1}\| \leq R_1 \),
\[
\{x_{n,1}(t)\} \text{ is uniformly bounded on } [0, 1], \quad (5.15)
\]
\[
\{x'_{n,1}(t)\} \text{ is uniformly bounded on } [0, 1]. \quad (5.16)
\]
Then
\[
\{x_{n,1}(t)\} \text{ is equicontinuous on } [0, 1]. \quad (5.17)
\]
As in the proof of (3.6),
\[
x''_{n,1}(t) + a(t)f(t, x_{n,1}(t) + \frac{1}{n}, x'_{n,1}(t)) = 0, 0 < t < 1,
\]
\[
x'_{n,1}(0) = 0, x_{n,1}(1) = \sum_{i=1}^{m-2} a_i x_{n,1}(\xi_i). \quad (5.18)
\]
Now we show that for all \(t_1, t_2 \in [0, 1] \),
\[
|I(x'_{n,1}(t_2)) - I(x'_{n,1}(t_1))| \leq \max_{t \in [0, 1]} a(t) \left[h(R_1 + \epsilon)(|x_{n,1}(t_2) - x_{n,1}(t_1)| + |t_2 - t_1|) \right.
\]
\[
+ \left. \int_{x_{n,1}(t_1)}^{x_{n,1}(t_2) + \frac{1}{n} (1 - t_2)} \omega(t)dt \right]. \quad (5.19)
\]
From (5.18),
\[
-x''_{n,1}(t) = a(t)f(t, x_{n,1}(t) + \frac{1}{n}, x'_{n,1}(t)) \leq a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})]r(x'_{n,1}(t)), \quad \forall t \in (0, 1),
\]
\[
x''_{n,1}(t) = -a(t)f(t, x_{n,1}(t) + \frac{1}{n}, x'_{n,1}(t)) \geq -a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})]r(x'_{n,1}(t)), \quad \forall t \in (0, 1),
\]
\[
\frac{-x''_{n,1}(t)x'_{n,1}(t)}{r(x'_{n,1}(t))} \geq a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})]x'_{n,1}(t) \quad (5.20)
\]
\[
= a(t)[h(R_1 + \epsilon)x'_{n,1}(t) + \omega(x_{n,1}(t) + \frac{1}{n} (1 - t))x'_{n,1}(t)], \quad \forall t \in (0, 1),
\]
\[
\frac{x''_{n,1}(t)x'_{n,1}(t)}{r(x'_{n,1}(t))} \leq -a(t)[h(x_{n,1}(t) + \frac{1}{n}) + \omega(x_{n,1}(t) + \frac{1}{n})]x'_{n,1}(t) \quad (5.21)
\]
\[
= -a(t)[h(R_1 + \epsilon)x'_{n,1}(t) + \omega(x_{n,1}(t) + \frac{1}{n} (1 - t))x'_{n,1}(t)], \quad \forall t \in (0, 1).
\]
Since the right-hand sides of (5.20) and (5.21) are positive, for all \(t_1, t_2 \in [0, 1] \) and \(t_1 < t_2 \),
\[
I(x_{n,2}^\prime(t_2)) - I(x_{n,1}^\prime(t_1)) \\
\geq \max_{t \in [0,1]} a(t)[h(R_1 + \epsilon) \left(\int_{t_1}^{t_2} x_{n,1}^\prime(s)dt + \int_{t_1}^{t_2} \omega(x_{n,1}(s) + \frac{1}{n})x_{n,1}^\prime(s)ds \right)] \\
\geq \max_{t \in [0,1]} a(t)[h(R_1 + \epsilon)(|x_{n,1}(t_2) - x_{n,1}(t_1)|) + \int_{x_{n,1}(t_1)}^{x_{n,1}(t_2)} \omega(s)dt], \\
I(x_{n,1}^\prime(t_1)) - I(x_{n,1}^\prime(t_2)) \\
\leq \max_{t \in [0,1]} a(t)[h(R_1 + \epsilon)(|x_{n,1}(t_2) - x_{n,1}(t_1)|) + \int_{x_{n,1}(t_1)}^{x_{n,1}(t_2)} \omega(s)dt],
\]
(5.19) holds.

Since \(I^{-1} \) is uniformly continuous on \([0, I(-R_1 - \epsilon)]\), for all \(\epsilon > 0 \), there exists \(\epsilon' > 0 \) such that
\[
|I^{-1}(s_1) - I^{-1}(s_2)| < \epsilon', \quad \forall |s_1 - s_2| < \epsilon', \quad s_1, s_2 \in [0, I(-R_1 - \epsilon)]. \tag{5.22}
\]
Also (5.19) guarantees that for \(\epsilon' > 0 \), there exists \(\delta' > 0 \) such that
\[
|I(x_{n,1}^\prime(t_2)) - I(x_{n,1}^\prime(t_1))| < \epsilon', \quad \forall |t_1 - t_2| < \delta', \quad t_1, t_2 \in [0, 1]. \tag{5.23}
\]
From this inequality and (5.22),
\[
|x_{n,1}^\prime(t_2) - x_{n,1}^\prime(t_1)| = |I^{-1}(I(x_{n,1}^\prime(t_2))) - I^{-1}(I(x_{n,1}^\prime(t_1)))| < \epsilon, \\
\forall |t_1 - t_2| < \delta', \quad t_1, t_2 \in [0, 1]; \tag{5.24}
\]
that is,
\[
\{x_{n,1}^\prime(t)\} \text{ is equi-continuous on } [0, 1]. \tag{5.25}
\]
From (5.15)–(5.17), (5.25) and the Arzela-Ascoli Theorem, \(\{x_{n,1}(t)\} \) and \(\{x_{n,1}^\prime(t)\} \) are relatively compact on \(C^1[0, 1] \). This implies, there exists a subsequence \(\{x_{n_j,1}(t)\} \) of \(\{x_{n,1}(t)\} \) and function \(x_{0,1}(t) \in C^1[0, 1] \) such that
\[
\lim_{j \to +\infty} \max_{t \in [0,1]} |x_{n_j,1}(t) - x_{0,1}(t)| = 0, \quad \lim_{j \to +\infty} \max_{t \in [0,1]} |x_{n_j,1}^\prime(t) - x_{0,1}^\prime(t)| = 0.
\]
Since \(x_{n_j,1}(0) = 0, x_{n_j,1}(1) = \sum_{i=1}^{m-2} a_i x_{n_j,1}^\prime(\xi_i), x_{n_j,1}^\prime(t) < 0, x_{n_j,1}(t) > 0, t \in (0, 1), j \in \{1, 2, \ldots\}, \)
\[
x_{0,1}(0) = 0, x_{0,1}(1) = \sum_{i=1}^{m-2} a_i x_{0,1}(\xi_i), x_{0,1}^\prime(t) \leq 0, x_{0,1}(t) \geq 0, t \in (0, 1). \tag{5.26}
\]
For \((t, x_{n_j,1}(t) + \frac{1}{n_j}, x_{n_j,1}^\prime(t)) \in [0, 1] \times [0, R_1 + \epsilon] \times (-\infty, 0) \), from (S5) there exists a function \(\Psi_{R_1} \in C([0, 1], \mathbb{R}_+) \) such that
\[
f(t, x_{n_j,1}(t) + \frac{1}{n_j}, x_{n_j,1}^\prime(t))ds \geq \Psi_{R_1}(t)(-x_{n_j,1}^\prime(t))^\delta, \quad 0 \leq \delta < 1.
\]
Then, for \(n \in N_0, \)
\[
x_{n_j,1}^\prime(t) = -\int_{0}^{t} a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x_{n_j,1}^\prime(s))ds \\
\leq -\int_{0}^{t} a(s)\Psi_{R_1+\epsilon}(s)(-x_{n_j,1}^\prime(s))^\delta ds, \quad t \in [0, 1], n \in N_0,
\]
which implies
\[x'_{n_j,1}(t) \leq -(1 - \delta)(\int_0^t a(s)\Psi_{R_1 + \epsilon}(s)ds)^{\frac{1}{(1 - \delta)}}. \]

and
\[
x_{n_j,1}(t) = -\int_0^t (t - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \left(\int_0^1 (1 - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds \right)
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
\geq -\int_0^1 (1 - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
+ \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \int_0^1 (1 - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
\geq \sum_{i=1}^{m-2} a_i \int_0^1 a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
- \sum_{i=1}^{m-2} a_i \int_0^1 (\xi_i - s)a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
= \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds
\geq \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)\Psi_{R_1 + \epsilon}(s)(-x'_{n_j,1}(s))\delta ds
\geq \sum_{i=1}^{m-2} a_i (1 - \xi_i) \int_0^1 a(s)\Psi_{R_1 + \epsilon}(s)((1 - \delta)(\int_0^t a(s)\Psi_{R_1 + \epsilon}(s)ds)^{\frac{1}{1 - \delta}})\delta ds
=: F, \quad t \in [0, 1].
\]

Since
\[
f(t, x_{n_j,1}(t) + \frac{1}{n_j}, x'_{n_j,1}(t))
\leq \left[h(x_{n_j,1}(t) + \frac{1}{n_j}) + \omega(x_{n_j,1}(t) + \frac{1}{n_j}) \right] r(x'_{n_j,1}(t))
\leq \left[h\left(\frac{R_1}{\gamma} + \epsilon \right) + \omega(F) \right] r(\delta - 1)\left(\int_0^t a(s)\Psi_{R_1 + \epsilon}(s)ds \right)^{\frac{1}{1 - \delta}}),
\]
and
\[
x'_{n_j,1}(t) - x'_{n_j,1}(\frac{1}{2}) = -\int_{1/2}^t a(s)f(s, x_{n_j,1}(s) + \frac{1}{n_j}, x'_{n_j,1}(s))ds, \quad t \in (0, 1),
\]
Then (1.1) has at least two positive solutions $x_{0,1}(t) = x_{0,1}(1/2) = -\int_{1/2}^{t} a(s)f(s, x_{0,1}(s), x'_{0,1}(s))ds$, $t \in (0, 1)$.

Differentiating, we have

$$x''_{0,1}(t) + a(t)f(t, x_{0,1}(t), x'_{0,1}(t)) = 0, \quad 0 < t < 1.$$

From this equality and from (5.26), $x_{0,1}(t)$ is a positive solution of (1.1) with $x_{0,1} \in C^1[0, 1] \cap C^2(0, 1)$.

For the set $\{x_{n,2}\}_{n \in N_0} \subseteq (\Omega_2 - \Omega_1) \cap P$, as in the proof for the set $\{x_{n,1}\}_{n \in N_0}$, we obtain a convergent subsequence $\{x_{n,2}\}_{n \in N_0}$ of $\{x_{n,2}\}_{n \in N_0}$ with $\lim_{n \to +\infty} x_{n,2} = x_{0,2} \in C^1[0, 1] \cap C^2(0, 1)$. Moreover, $x_{0,2}$ is a positive solution to (1.1).

Example 5.1 In (1.1), let $f(t, u, z) = \mu[1 + (-2)^a][1 + u^b + u^{-d}]$ and $a(t) \equiv 1$ with $0 \leq a < 1, b > 1, 0 < d < 1$ and $\mu > 0$. If

$$\mu < \sup_{c \in \mathbb{R}^+} \frac{I(c^{1-\sum_{i=1}^{m-2} a_i})}{\max_{t \in [0, 1]}(c + c^{1-d} + \frac{c^{d-1}}{1+t})},$$

Then (1.1) has at least two positive solutions $x_{0,1}, x_{0,2} \in C^1[0, 1] \cap C^2(0, 1)$.

References

DEPARTMENT OF MATHEMATICS, SHANDONG NORMAL UNIVERSITY, JINAN, 250014, CHINA

E-mail address, Ya Ma: maya-0907@163.com

E-mail address, Baoqiang Yan: yanbqcn@yahoo.com.cn