THANH LONG NGUYEN, TIEN DUNG BUI

A NONLINEAR WAVE EQUATION WITH A NONLINEAR INTEGRAL EQUATION INVOLVING THE BOUNDARY VALUE

ABSTRACT. We consider the initial-boundary value problem for the nonlinear wave equation

\[u_{tt} - u_{xx} + f(u, u_t) = 0, \quad x \in \Omega = (0, 1), \; 0 < t < T, \]

\[u_x(0, t) = P(t), \quad u(1, t) = 0, \]

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \]

where \(u_0, u_1, f \) are given functions, the unknown function \(u(x, t) \) and the unknown boundary value \(P(t) \) satisfy the nonlinear integral equation

\[P(t) = g(t) + H(u(0, t)) - \int_0^t K(t - s, u(0, s)) ds, \]

where \(g, K, H \) are given functions. We prove the existence and uniqueness of weak solutions to this problem, and discuss the stability of the solution with respect to the functions \(g, H \) and \(K \). For the proof, we use the Galerkin method.

1. INTRODUCTION

In this paper we consider the problem of finding a pair of functions \((u, P)\) that satisfy

\[u_{tt} - u_{xx} + f(u, u_t) = 0, \quad x \in \Omega = (0, 1), \; 0 < t < T, \]

\[u_x(0, t) = P(t) \] \hspace{1cm} (1.1)

\[u(1, t) = 0, \] \hspace{1cm} (1.2)

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \] \hspace{1cm} (1.3)

where \(u_0, u_1, f \) are given functions satisfying conditions to be specified later and the unknown function \(u(x, t) \) and the unknown boundary value \(P(t) \) satisfy the nonlinear integral equation

\[P(t) = g(t) + H(u(0, t)) - \int_0^t K(t - s, u(0, s)) ds, \] \hspace{1cm} (1.5)

where \(g, H, K \) are given functions. Ang and Dinh \cite{2} established the existence of a unique global solution for the initial and boundary value problem \((1.1)-(1.4)\)

\textit{2000 Mathematics Subject Classification.} 35B30, 35L70, 35Q72.

\textit{Key words and phrases.} Galerkin method; system of integrodifferential equations; Schauder fixed point theorem; weak solutions; stability of the solutions.

©2004 Texas State University - San Marcos.

with u_0, u_1, P given functions and $f(u, u_t) = |u_t|^\alpha \text{sign}(u_t)$, $(0 < \alpha < 1)$. As a generalization of the results in [2], Long and Dinh [7, 9, 10] have considered problem (1.1)-(1.4) associated with the following nonhomogeneous boundary condition at $x = 0,$

$$u_x(0, t) = g(t) + H(u(0, t)) - \int_0^t K(t - s, u(0, s))ds. \quad (1.6)$$

We have considered it with $K \equiv 0$, $H(s) = hs$, where $h > 0$ [9]; $K \equiv 0$ [7], $H(s) = hs$, $K(t, u) = k(t)u$, where $h > 0$, $k \in H^2(0, T)$, for all $T > 0$ [10]. In the case of $H(s) = hs$, $K(t, u) = h\omega(\sin \omega t)u$, where $h > 0$, $\omega > 0$ are given constants, the problem (1.1)-(1.5) is formed from the problem (1.1)-(1.4) wherein, the unknown function $u(x, t)$ and the unknown boundary value $P(t)$ satisfy the following Cauchy problem

$$P''(t) + \omega^2 P(t) = h\epsilon(t), \quad 0 < t < T, \quad (1.7)$$
$$P(0) = P_0, \quad P'(0) = P_1, \quad (1.8)$$

where $\omega > 0$, $h \geq 0$, P_0, P_1 are given constants [10]. An and Trieu [1], studied a special case of problem (1.1)-(1.4), (1.7), (1.8) with $u_0 = u_1 = P_0 = 0$ and with $f(u, u_t)$ linear, i.e., $f(u, u_t) = Ku + \lambda u_t$ where K, λ are given constants. In the later case the problem (1.1)-(1.4), (1.7), and (1.8) is a mathematical model describing the shock between a solid body and a linear viscoelastic bar with nonlinear elastic constraints at the side, and constraints associated with a viscous frictional resistance. From (1.7), (1.8) we represent $P(t)$ in terms of P_0, P_1, ω, h, $u_{tt}(0, t)$ and then by integrating by parts, we have

$$P(t) = g(t) + hu(0, t) - \int_0^t k(t - s)u(0, s)ds, \quad (1.9)$$

where

$$g(t) = (P_0 - hu_0(0))\cos \omega t + (P_1 - hu_1(0))\frac{\sin \omega t}{\omega}, \quad (1.10)$$
$$k(t) = h\omega(\sin \omega t). \quad (1.11)$$

By eliminating an unknown function $P(t)$, we replace the boundary condition (1.2) by

$$u_x(0, t) = g(t) + hu(0, t) - \int_0^t k(t - s)u(0, s)ds. \quad (1.12)$$

Then, we reduce problem (1.1)-(1.4), (1.7), (1.8) to (1.1)-(1.4), (1.9)-(1.11) or to (1.1)-(1.3), (1.4), (1.10)-(1.12).

In this paper, we consider two main parts. In Part 1, we prove a theorem of global existence and uniqueness of a weak solution of problem (1.1)-(1.5). The proof is based on a Galerkin method associated to a priori estimates, weak-convergence and compactness techniques. We remark that the linearization method in [6, 11, 13] cannot be used for the problems in [2, 4, 5, 7, 9, 10]. In Part 2 we prove that the solution (u, P) of this problem is stable with respect to the functions g, H and K. The results obtained here generalize the ones in [1, 2, 4, 7, 9, 10].
2. THE EXISTENCE AND UNIQUENESS THEOREM

We first set notations $\Omega = (0, 1)$, $Q_T = \Omega \times (0, T)$, $T > 0$, $L^p = L^p(\Omega)$, $H^1 = H^1(\Omega)$, $H^2 = H^2(\Omega)$, where H^1, H^2 are the usual Sobolev spaces on Ω.

The norm in L^2 is denoted by $\| \cdot \|$. We also denote by $\langle \cdot, \cdot \rangle$ the scalar product in L^2 or pair of dual scalar product of continuous linear functional with an element of a function space. We denote by $\| \cdot \|_X$ the norm of a Banach space X and by X' the dual space of X. We denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$ for the Banach space of the real functions $u : (0, T) \to X$ measurable, such that

$$
\| u \|_{L^p(0,T;X)} = \left(\int_0^T \| u(t) \|^p_X dt \right)^{1/p}
$$

for $1 \leq p < \infty$, and

$$
\| u \|_{L^\infty(0,T;X)} = \operatorname{esssup}_{0 < t < T} \| u(t) \|_X \text{ for } p = \infty.
$$

We put

$$
V = \{ v \in H^1 : v(1) = 0 \}, \quad a(u,v) = \left\langle \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} \right\rangle = \int_0^1 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx.
$$

Here V is a closed subspace of H^1 and on V, $\| v \|_{H^1}$ and $\| v \|_{V} = \sqrt{a(v,v)}$ are two equivalent norms.

Lemma 2.1. The imbedding $V \hookrightarrow C^0(\overline{\Omega})$ is compact and

$$
\| v \|_{C^0(\overline{\Omega})} \leq \| v \|_{V}
$$

for all $v \in V$.

The proof is straightforward and we omit it. We make the following assumptions:

(A) $u_0 \in H^1$ and $u_1 \in L^2$

(G) $g \in H^1(0, T)$ for all $T > 0$

(H) $H \in C^1(\mathbb{R})$, $H(0) = 0$ and there exists a constant $h_0 > 0$ such that

$$
\widehat{H}(y) = \int_0^y H(s) ds \geq -h_0
$$

(K1) K and $\frac{\partial K}{\partial r}$ are in $C^0(\mathbb{R}_+ \times \mathbb{R}; \mathbb{R})$

(K2) There exist the nonnegative functions $k_1 \in L^2(0, T)$, $k_2 \in L^1(0, T)$, $k_3 \in L^2(0, T)$, and $k_4 \in L^1(0, T)$, such that

(i) $|K(t, u)| \leq k_1(t)|u| + k_2(t),$

(ii) $|\frac{\partial K}{\partial r}(t, u)| \leq k_3(t)|u| + k_4(t).$

The function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies $f(0, 0) = 0$ and the following conditions:

(F1) $(f(u, v) - f(u, \overline{v}))(v - \overline{v}) \geq 0$ for all $u, v, \overline{v} \in \mathbb{R}$

(F2) There is a constant α in $[0, 1]$ and a function $B_1 : \mathbb{R}_+ \to \mathbb{R}_+$ continuous and satisfying

$$
|f(u, v) - f(u, \overline{v})| \leq B_1(|u|)|v - \overline{v}|^{\alpha} \text{ for all } u, v, \overline{v} \in \mathbb{R}
$$

(F3) There is a constant β in $[0, 1]$ and a function $B_2 : \mathbb{R}_+ \to \mathbb{R}_+$ continuous and satisfying

$$
|f(u, v) - f(\overline{u}, v)| \leq B_2(|v|)|u - \overline{u}|^{\beta} \text{ for all } u, \overline{u}, v \in \mathbb{R}
$$
We will use the notation $u' = u_t = \partial u/\partial t$, $u'' = u_{tt} = \partial^2 u/\partial t^2$. Then we have the following theorem.

Theorem 2.2. Let $(A), (G), (H), (K1), (K2), (F1), (F3)$ hold. Then, for every $T > 0$, there exists a weak solution (u, P) to problem (1.1)-(1.5) such that

$$u \in L^\infty(0, T; V), \quad u_t \in L^\infty(0, T; L^2), \quad u(0, \cdot) \in H^1(0, T),$$

$$P \in H^1(0, T).$$

Furthermore, if $\beta = 1$ in (F3) and the functions H, K, f satisfying, in addition

(H1) $H \in C^2(\mathbb{R})$, $H'(s) > -1$ for all $s \in \mathbb{R}$

(K3) For all M positive and all T positive, there exists $p_{M,T}, q_{M,T}$ in $L^2(0, T)$, $p_{M,T}(t) \geq 0$, $q_{M,T}(t) \geq 0$ such that

(i) $|K(t, u) - K(t, v)| \leq p_{M,T}(t)|u - v|$ for all $u, v \in \mathbb{R}$, $|u|, |v| \leq M$,

(ii) $|\partial_K(t, u)| - \partial_K(t, v)| \leq q_{M,T}(t)|u - v|$ for all $u, v \in \mathbb{R}$, $|u|, |v| \leq M$.

(F4) $B_2(v) \in L^2(Q_T)$ for all $v \in L^2(Q_T)$ for all $T > 0$.

Then the solution is unique.

Remark 2.3. This result is stronger than that in [9]. Indeed, corresponding to the same problem (1.1)-(1.5) with $K(t, u) \equiv 0$ and $H(s) = hs$, $h > 0$ the following assumptions made in [9] are not needed here: $0 < \alpha < 1$, $B_1(|u|) \in L^{2/(1-\alpha)}(Q_T)$ for all $u \in L^\infty(0, T; V)$ and all $T > 0$; B_1, B_2 are nondecreasing functions.

Proof of Theorem 2.2. It is done in several steps.

Step 1. The Galerkin approximation. Consider the orthonormal basis on V consisting of eigenvectors of the Laplacian, $-\partial^2/\partial x^2$,

$$w_j(x) = \sqrt{2/(1 + \lambda_j^2)} \cos(\lambda_j x), \quad \lambda_j = (2j - 1)\pi/2, \quad j = 1, 2, \ldots.$$

Put

$$u_m(t) = \sum_{j=1}^{m} c_{mj}(t)w_j,$$

where $c_{mj}(t)$ satisfy the system of nonlinear differential equations

$$\langle u_m''(t), w_j \rangle + a(u_m(t), w_j) + P_m(t)w_j(0) + \langle f(u_m(t), u_m'(t)), w_j \rangle = 0,$$

$$P_m(t) = g(t) + H(u_m(0, t)) - \int_{0}^{t} K(t - s, u_m(0, s))ds,$$

with

$$u_m(0) = u_{0m} = \sum_{j=1}^{m} \alpha_{mj}w_j \to u_0 \quad \text{strongly in } H^1,$$

$$u'_m(0) = u_{1m} = \sum_{j=1}^{m} \beta_{mj}w_j \to u_1 \quad \text{strongly in } L^2,$$

This system of equations is rewritten in form

$$c_{mj}''(t) + \lambda_j^2 c_{mj}(t) = \frac{-1}{\|w_j\|^2}(P_m(t)w_j(0) + \langle f(u_m(t), u_m'(t)), w_j \rangle),$$

$$P_m(t) = g(t) + H(u_m(0, t)) - \int_{0}^{t} K(t - s, u_m(0, s))ds,$$

$$c_{mj}(0) = \alpha_{mj}, \quad c_{mj}'(0) = \beta_{mj}, \quad 1 \leq j \leq m.$$
This system is equivalent to the system of integrodifferential equations
\[c_{mj}(t) = G_{mj}(t) = \frac{1}{\|w_j\|^2} \int_0^t N_j(t - \tau) (H(u_m(0, \tau)) w_j(0) + \langle f(u_m(\tau), u_m'(\tau)), w_j \rangle) d\tau \]
\[+ \frac{w_j(0)}{\|w_j\|^2} \int_0^t N_j(t - \tau) d\tau \int_0^\tau K(\tau - s, u_m(0, s)) ds, \quad 1 \leq j \leq m, \] (2.7)

where \(N_j(t) = \sin(\lambda_j t) / \lambda_j \) and
\[G_{mj}(t) = \alpha_{mj} N_j'(t) + \beta_{mj} N_j(t) - \frac{w_j(0)}{\|w_j\|^2} \int_0^t N_j(t - \tau) g(\tau) d\tau. \] (2.8)

We then have the following lemma.

Lemma 2.4. Let \((A), (G), (H), (K1), (K2), (F1), (F3)\) hold. For fixed \(T > 0\), the system \((1.10)-(1.11)\) has solution \(c_m = (c_{m1}, c_{m2}, \ldots, c_{mm})\) on an interval \([0, T_m] \subset [0, T)\).

Proof. Omitting the index \(m\), system (2.7), (2.8) is rewritten in the form
\[c = Uc, \]
where \(c = (c_1, c_2, \ldots, c_m), Uc = ((Uc)_1, (Uc)_2, \ldots, (Uc)_m),\)
\[(Uc)_j(t) = G_j(t) + \int_0^t N_j(t - \tau) (Vc)_j(\tau) d\tau, \] (2.9)
\[(Vc)_j(t) = f_{1j}(c(t), c'(t)) + \int_0^t f_{2j}(t - s, c(s)) ds, \] (2.10)
\[G_j(t) = \alpha_{mj} N_j'(t) + \beta_{mj} N_j(t) - \frac{w_j(0)}{\|w_j\|^2} \int_0^t N_j(t - \tau) g(\tau) d\tau, \] (2.11)

the functions \(f_{1j} : \mathbb{R}^{2m} \to \mathbb{R} \) \(f_{2j} : [0, T_m] \times \mathbb{R}^m \to \mathbb{R}\) satisfy
\[f_{1j}(c, d) = -\frac{1}{\|w_j\|^2} \left[H\left(\sum_{i=1}^m c_i w_i(0)\right) w_j(0) + \langle f\left(\sum_{i=1}^m c_i w_i, \sum_{i=1}^m d_i w_i\right), w_j \rangle\right], \] (2.12)
\[f_{2j}(t, c) = \frac{w_j(0)}{\|w_j\|^2} K(t, \sum_{i=1}^m c_i w_i(0)), \quad 1 \leq j \leq m. \] (2.13)

For every \(T_m > 0, M > 0\) we put
\[S = \{ c \in C^1([0, T_m]; \mathbb{R}^m) : \|c\|_1 \leq M \}, \quad \|c\|_1 = \|c\|_0 + \|c'\|_0, \]
\[\|c\|_0 = \sup_{0 \leq t \leq T_m} |c(t)|_1, \quad |c(t)|_1 = \sum_{i=1}^m |c_i(t)|. \]

Clearly \(S\) is a closed convex and bounded subset of \(Y = C^1([0, T_m]; \mathbb{R}^m)\). Using the Schauder fixed point theorem we shall show that the operator \(U : S \to Y\) defined by (2.11)-(2.13) has a fixed point. This fixed point is the solution of (2.7).

(a) First we show that \(U\) maps \(S\) into itself. Note that \((Vc)_j \in C^0([0, T_m]; \mathbb{R})\) for all \(c \in C^1([0, T_m]; \mathbb{R}^m)\), hence it follows from (2.9), and the equality
\[(Uc)_j(t) = G_j(t) + \int_0^t N_j(t - \tau) (Vc)_j(\tau) d\tau, \] (2.14)
that $U : Y \to Y$. Let $c \in S$, we deduce from (2.8), (2.13) that

$$
|(Uc)(t)|_1 \leq |G(t)|_1 + \frac{1}{\lambda_1}T_m\|Vc\|_0,
$$
(2.15)

$$
|(Uc)'(t)|_1 \leq |G'(t)|_1 + T_m\|Vc\|_0.
$$
(2.16)

On the other hand, it follows from (H), (K1), (K2), (F2), (F3), (2.10), (2.12), (2.13) that

$$
\|Vc\|_0 \leq \sum_{j=1}^m [N_1(f_{1j}, M) + TN_2(f_{2j}, M, T)] = \beta(M, T) \quad \text{for all } c \in S,
$$
(2.17)

where

$$
N_1(f_{1j}, M) = \sup\{|f_{1j}(y, z)| : \|y\|_{\mathbb{R}^m} \leq M, \|z\|_{\mathbb{R}^m} \leq M\},
$$

$$
N_2(f_{2j}, M, T) = \sup\{|f_{2j}(t, y) : 0 \leq t \leq T, \|y\|_{\mathbb{R}^m} \leq M\}.
$$
(2.18)

Hence, from (2.15)-(2.18) we obtain

$$
\|Uc\|_1 \leq \|G\|_{1T} + (1 + \frac{1}{\lambda_1})T_m\beta(M, T),
$$

where

$$
\|G\|_{1T} = \|G\|_{0T} + \|G'\|_{0T} = \sup_{0 \leq t \leq T} |G(t)|_1 + \sup_{0 \leq t \leq T} |G'(t)|_1.
$$

Choosing M and $T_m > 0$ such that

$$
M > 2\|G\|_{1T} \quad \text{and} \quad (1 + \frac{1}{\lambda_1})T_m\beta(M, T) \leq M/2.
$$

Hence, $\|Uc\|_1 \leq M$ for all $c \in S$, that is, the operator U maps S the set into itself. (b) Now we show that the operator U is continuous on S. Let $c, d \in S$, we have

$$
(Uc)_j(t) - (Ud)_j(t) = \int_0^t N_j(t - \tau)((Vc)_j(\tau) - (Vd)_j(\tau))d\tau.
$$

Hence

$$
\|Uc - Ud\|_0 \leq \frac{1}{\lambda_1}T_m\|Vc - Vd\|_0.
$$
(2.19)

Similarly, we obtain from the equality

$$
(Uc)'_j(t) - (Ud)'_j(t) = \int_0^t N_j'(t - \tau)((Vc)_j(\tau) - (Vd)_j(\tau))d\tau,
$$

which implies

$$
\|(Uc)' - (Ud)'\|_0 \leq T_m\|Vc - Vd\|_0.
$$
(2.20)

By estimates (2.19), (2.20), we only have to prove that the operator $V : Y \to C^0([0, T_m]; \mathbb{R}^m)$ is continuous on S. We have

$$
(Vc)_j(t) - (Vd)_j(t) = f_{1j}(c(t), c'(t)) - f_{1j}(d(t), d'(t))
$$

$$
+ \int_0^t (f_{2j}(t - s, c(s)) - f_{2j}(t - s, d(s)))ds.
$$
(2.21)

From the assumptions (H), (F2) and (F3), it follows that there exists a constant $K_M > 0$ such that

$$
\sup_{0 \leq t \leq T_m} \sum_{j=1}^m |f_{1j}(c(t), c'(t)) - f_{1j}(d(t), d'(t))| \leq K_M(\|c - d\|_0 + \|c - d\|_0^\beta + \|c' - d'\|_0^\alpha),
$$
(2.22)
for all \(c, d \in S\). Then we have the following lemma.

Lemma 2.5. Let \(f_{2j} : [0, T_m] \times \mathbb{R}^m \to \mathbb{R}\) be continuous, and let

\[
(W_j c)(t) = \int_0^t f_{2j}(t-s, c(s))ds, c \in C^0([0, T_m]; \mathbb{R}^m). \tag{2.23}
\]

Then, the operator \(W_j : C^0([0, T_m]; \mathbb{R}^m) \to C^0([0, T_m]; \mathbb{R})\) is continuous on \(S\).

The proof of this lemma follows easily from \(f_{2j}\) being uniformly continuous on \([0, T_m] \times [-M, M]^m\). We omit the proof.

From (2.21), (2.22), (2.23), we deduce that

\[
\|Vc - Vd\|_0 = \sup_{0 \leq \tau \leq T_m} \left| \sum_{j=1}^m [(Vc)_j(\tau) - (Vd)_j(\tau)] \right|
\leq K_M \left(\|c - d\|_0 + \|c - d\|^2_0 + \|c' - d'\|^2_0 \right) + \sup_{0 \leq \tau \leq T_m} \left| \sum_{j=1}^m [(W_j c)(t) - (W_j d)(t)] \right|, \quad \forall c, d \in S.
\tag{2.24}
\]

Thus, Lemma 2.5 and inequality (2.24) show that \(V : S \to C^0([0, T_m]; \mathbb{R}^m)\) is continuous.

(c) Now, we shall show that the set \(\overline{US}\) is a compact subset of \(Y\). Let \(c \in S, t, t' \in [0, T_m]\). From (2.9), we rewrite

\[
(Uc)_j(t) - (Uc)_j(t') = G_j(t) - G_j(t') + \int_0^t N_j(t-\tau)(Vc)_j(\tau)d\tau - \int_0^{t'} N_j(t'-\tau)(Vc)_j(\tau)d\tau
= G_j(t) - G_j(t') + \int_0^t (N_j(t-\tau) - N_j(t'-\tau))(Vc)_j(\tau)d\tau
\tag{2.25}
- \int_t^{t'} N_j(t'-\tau)(Vc)_j(\tau)d\tau.
\]

From the inequality \(|N_j(t) - N_j(s)| \leq |t - s|\) for all \(t, s \in [0, T_m]\) and (2.17), we obtain

\[
|(Uc)(t) - (Uc)(t')|_1 = \sum_{j=1}^m |(Uc)_j(t) - (Uc)_j(t')| \leq |G(t) - G(t')|_1 + (T_m + \frac{1}{\lambda_1})|t - t'|\|Vc\|_0 \tag{2.26}
\leq |G(t) - G(t')|_1 + \beta(M, T)(T_m + \frac{1}{\lambda_1})|t - t'|.
\]

Similarly, from (2.14) and (2.17), we also obtain

\[
|(Uc)'(t) - (Uc)'(t')|_1 \leq |G'(t) - G'(t')|_1 + \beta(M, T)(\lambda_m T_m + 1)|t - t'|. \tag{2.27}
\]

Since \(US \subset S\), from estimates (2.26), (2.27) we deduce that the family of functions \(US = \{Uc, c \in S\}\), are bounded and equicontinuous with respect to the norm \(\| \cdot \|_1\) of the space \(Y\). Applying Arzela-Ascoli’s theorem to the space \(Y\), we deduce that \(\overline{US}\) is compact in \(Y\). By the Schauder fixed-point theorem, \(U\) has a fixed point \(c \in S\), which satisfies (2.7). The proof of Lemma 2.4 is complete. \(\square\)
Using Lemma 2.1, for $T > 0$, fixed, system (2.4) - (2.6) has solution $(u_m(t), P_m(t))$ on an interval $[0, T_m]$. The following estimates allow one to take $T_m = T$ for all m.

Step 2. A priori estimates. Substituting (2.5) into (2.4), then multiplying the equation of (2.4) by $c_j(t)$ and summing up with respect to j, integrating by parts with respect to the time variable from 0 to t, by (G) and (F1), we have

$$S_m(t) \leq -2\mathcal{H}(u_m(0, t)) + 2\mathcal{H}(u_{om}(0)) + S_m(0) + 2g(0)u_{om}(0)$$

$$- 2g(t)u_m(0, t) + 2 \int_0^t g'(s)u_m(0, s)ds - 2 \int_0^t \langle f(u_m(s), 0), u'_m(s) \rangle ds$$

$$+ 2 \int_0^t u'_m(0, s)ds \int_0^s K(s - \tau, u_m(0, \tau))d\tau,$$

(2.28)

where

$$S_m(t) = \|u'_m(t)\|^2 + \|u_m(t)\|^2_V. \quad (2.29)$$

Then, using (2.6), (2.29), (H), and Lemma 2.1 we have

$$- 2\mathcal{H}(u_m(0, t)) + 2\mathcal{H}(u_{om}(0)) + S_m(0) + 2g(0)u_{om}(0)$$

$$\leq 2h_0 + 2\mathcal{H}(u_{om}(0)) + S_m(0) + 2g(0)u_{om}(0)$$

(2.30)

$$\leq \frac{1}{4}C_1, \quad \text{for all } m \text{ and all } t,$$

where C_1 is a constant depending only on u_0, u_1, h_0, H, and g.

Again using Lemma 2.1 and the inequality $2ab \leq 4a^2 + \frac{1}{4}b^2$, we obtain

$$| - 2g(t)u_m(0, t) + 2 \int_0^t g'(s)u_m(0, s)ds|$$

$$\leq 4g^2(t) + 4 \int_0^t |g'(s)|^2 ds + \frac{1}{4}S_m(t) + \frac{1}{4} \int_0^t S_m(s)ds. \quad (2.31)$$

Using Lemma 2.1 from (F3) it follows that

$$| - 2 \int_0^t \langle f(u_m(s), 0), u'_m(s) \rangle ds| \leq 2B_2(0) \int_0^t S_m(s)^{(1 + \beta)/2} ds$$

$$\leq (1 + \beta)B_2(0) \int_0^t S_m(s)ds + (1 - \beta)B_2(0)t.$$

Note that the last integral in (2.28), after integrating by parts, gives

$$I = 2 \int_0^t u'_m(0, s)ds \int_0^s K(s - \tau, u_m(0, \tau))d\tau$$

$$= 2u_m(0, t) \int_0^t K(t - \tau, u_m(0, \tau))d\tau$$

$$- 2 \int_0^t u_m(0, s)ds \left[K(0, u_m(0, 0)) + \int_0^s \frac{\partial K}{\partial s}(s - \tau, u_m(0, \tau))d\tau \right].$$
Hence
\[|I| \leq 2\sqrt{S_m(t)} \int_0^t (k_1(t - \tau) \sqrt{S_m(\tau)} + k_2(t - \tau)) d\tau \]
\[+ 2 \int_0^t \sqrt{S_m(s)} ds [k_1(0) \sqrt{S_m(s)} + k_2(0)] \]
\[+ \int_0^t (k_3(s - \tau) \sqrt{S_m(\tau)} + k_4(s - \tau)) d\tau \]
\[= 2\sqrt{S_m(t)} \int_0^t k_1(t - \tau) \sqrt{S_m(\tau)} d\tau + 2\sqrt{S_m(t)} \int_0^t k_2(\tau) d\tau \]
\[+ 2k_1(0) \int_0^t S_m(s) ds + 2k_2(0) \int_0^t \sqrt{S_m(s)} ds \]
\[+ 2 \int_0^t \sqrt{S_m(s)} ds \int_0^s k_3(s - \tau) \sqrt{S_m(\tau)} d\tau + 2 \int_0^t \sqrt{S_m(s)} ds \int_0^s k_4(\tau) d\tau \]
\[\equiv I_1 + I_2 + 2k_1(0) \int_0^t S_m(s) ds + I_4 + I_5 + I_6. \]

By the inequality \(2ab \leq 4a^2 + \frac{1}{4}b^2\) and the Cauchy-Schwarz inequality we estimate without difficulty the following integrals in the right-hand side of the above expression as follows

\[I_1 = 2\sqrt{S_m(t)} \int_0^t k_1(t - \tau) \sqrt{S_m(\tau)} d\tau \leq \frac{1}{4}S_m(t) + 4 \int_0^t k_1^2(\tau) d\tau, \]
\[I_2 = 2\sqrt{S_m(t)} \int_0^t k_2(\tau) \leq \frac{1}{4}S_m(t) + 4 \left(\int_0^t k_2^2(\tau) d\tau \right)^2, \]
\[I_4 = 2k_4(0) \int_0^t S_m(s) ds \leq 4k_4^2(0) + \frac{1}{4} \int_0^t S_m(s) ds, \]
\[I_5 = 2 \int_0^t \sqrt{S_m(s)} ds \int_0^s k_3(s - \tau) \sqrt{S_m(\tau)} d\tau \leq 2\sqrt{t} \left(\int_0^t k_3^2(\tau) d\tau \right)^{1/2} \int_0^t S_m(s) ds, \]
\[I_6 = 2 \int_0^t \sqrt{S_m(s)} ds \int_0^s k_4(\tau) d\tau \leq \frac{1}{4} \int_0^t S_m(s) ds + 4t \left(\int_0^t k_4^2(\tau) d\tau \right)^2. \]

It follows from the estimates for \(I_1, I_2, I_4, I_5, I_6\) that

\[|I| \leq 4 \left(\int_0^t k_2(\tau) d\tau \right)^2 + 4k_2^2(0) + 4t \left(\int_0^t k_4(\tau) d\tau \right)^2 + \frac{1}{2}S_m(t) \]
\[+ \frac{1}{4} \left[1 + t + 16 \int_0^t k_1^2(\tau) d\tau + 8k_1(0) + 8\sqrt{t} \left(\int_0^t k_3^2(\tau) d\tau \right)^{1/2} \right] \int_0^t S_m(s) ds. \]

It follows from (2.28)-(2.30), (2.31)-(2.32), and (2.33) that

\[S_m(t) \leq D_1(t) + D_2(t) \int_0^t S_m(\tau) d\tau, \]

where

\[D_1(t) = C_1 + 16k_2^2(0) + 4(1 - \beta)B_2(0)t + 16g^2(t) \]
\[+ 16 \int_0^t |g'(s)|^2 ds + 16 \left(\int_0^t k_2(\tau) d\tau \right)^2 + 16t \left(\int_0^t k_4(\tau) d\tau \right)^2, \]

(2.35)
\[D_2(t) = 2 + 4(1 + \beta)B_2(0) + 8k_1(0) + t + \int_0^t k_1^2(\tau)d\tau + 8\sqrt{t}\left(\int_0^t k_3^2(\tau)d\tau\right)^{1/2} \]
\[\leq 2 + 4(1 + \beta)B_2(0) + 8k_1(0) + T + \|k_1\|_{L^2(0,T)}^2 + 8\sqrt{T}\|k_3\|_{L^2(0,T)} \equiv C_T^{(2)}. \]

Since \(H^1(0,T) \hookrightarrow C^0([0,T]) \), from the assumptions (G), (K2), we deduce that
\[|D_1(t)| \leq C_T^{(1)}, \text{ a.e. in } [0,T], \quad (2.36) \]
where \(C_T^{(1)} \), is a constant depending only on \(T \). By Gronwall’s lemma, from (2.34)-(2.36) we obtain that
\[S_m(t) \leq C_T^{(1)} \exp(C_T^{(2)}) \leq C_T \quad \forall t \in [0,T], \forall T > 0. \quad (2.37) \]

Now we need an estimate on the integral \(\int_0^t |u_m'(0,s)|^2 ds \). Put
\[K_m(t) = \sum_{j=1}^m \frac{\sin(\lambda_j t)}{\lambda_j}, \quad (2.38) \]
\[\gamma_m(t) = \sum_{j=1}^m w_j(0)\left[\alpha_m \cos(\lambda_j t) + \beta_m \frac{\sin(\lambda_j t)}{\lambda_j} \right] \]
\[- \sqrt{2} \sum_{j=1}^m \int_0^t \sin(\lambda_j(t-\tau)) \left(f(u_m(\tau), u_m'(\tau)) \cdot \frac{w_i}{\|w_j\|} \right) d\tau. \]

Then \(u_m(0,t) \) can be rewritten as
\[u_m(0,t) = \gamma_m(t) - 2 \int_0^t K_m(t-\tau)P_m(\tau)d\tau. \quad (2.39) \]

We shall require the following lemma which proof can be found in [2].

Lemma 2.6. There exist a constant \(C_2 > 0 \) and a positive continuous function \(D(t) \) independent of \(m \) such that
\[\int_0^t |\gamma_m'(\tau)|^2 d\tau \leq C_2 + D(t) \int_0^t \|f(u_m(\tau), u_m'(\tau))\|^2 d\tau \quad \forall t \in [0,T], \forall T > 0. \]

Lemma 2.7. There exist two positive constants \(C_T^{(3)} \) and \(C_T^{(4)} \) depending only on \(T \) such that
\[\int_0^t ds \int_0^s K_m(s-\tau)P_m(\tau)d\tau \leq C_T^{(3)} + C_T^{(4)} \int_0^t ds \int_0^s |u_m'(0,\tau)|^2 d\tau, \quad (2.40) \]
for all \(t \in [0,T] \) and all \(T > 0 \).

Proof. Integrating by parts, we have
\[\int_0^s K_m'(s-\tau)P_m(\tau)d\tau = K_m(s)P_m(0) + \int_0^t K_m(s-\tau)P_m'(\tau)d\tau, \]
From (2.5), we have

\[\int_0^t ds \int_0^s K'_m(s - \tau)P_m(\tau)d\tau \leq 2P^2_m(0) \int_0^t K^2_m(s)ds + 2 \int_0^t ds \int_0^s K^2_m(\tau)d\tau \int_0^s |P'_m(\tau)|^2d\tau \]

\[\leq 2 \int_0^t K^2_m(s)ds[P^2_m(0) + \int_0^t ds \int_0^s |P'_m(\tau)|^2d\tau]. \quad (2.41) \]

From (2.5), we have

\[P_m(0) = g(0) + H(u_{0m}(0)), \quad (2.42) \]

Then

\[P'_m(\tau) = g'(\tau) + H'(u_m(0, \tau))u'_m(0, \tau) - K(0, u_m(0, \tau)) - \int_0^\tau \frac{\partial K}{\partial \tau}(\tau - s, u_m(0, s))ds. \quad (2.43) \]

Using the inequality \((a + b + c + d)^2 \leq 4(a^2 + b^2 + c^2 + d^2)\), for all \(a, b, c, d \in \mathbb{R}\), we deduce from (2.37), (2.43), and (G), (H), (K2) that

\[\int_0^s |P'_m(\tau)|^2d\tau \]

\[\leq 4 \int_0^s |g'(\tau)|^2d\tau + 4 \max_{|s| \leq \sqrt{C_T}} |H'(s)|^2 \int_0^s |u'_m(0, \tau)|^2d\tau \]

\[+ 4 \int_0^s |K(0, u_m(0, \tau))|^2d\tau + 4 \int_0^s d\tau |\int_0^\tau \frac{\partial K}{\partial \tau}(\tau - s, u_m(0, s))ds|^2 \]

\[\leq 4 \int_0^s |g'(\tau)|^2d\tau + 4 \max_{|s| \leq \sqrt{C_T}} |H'(s)|^2 \int_0^s |u'_m(0, \tau)|^2d\tau \]

\[+ 8k^2_3(0) \int_0^s |u_m(0, \tau)|^2d\tau + 8k^2_2(0)s \]

\[+ 8 \int_0^s d\tau \int_0^\tau k^3_3(s)ds \int_0^s u^2_m(0, s)ds + 8 \int_0^s d\tau (\int_0^\tau k_4(s)ds)^2 \]

\[\leq 4 \int_0^s |g'(\tau)|^2d\tau + 8[k^2_3(0)C_T + k^2_2(0)s + 4C_Ts^2 \int_0^s k^2_3(\tau)d\tau] \]

\[+ 8s(\int_0^s k_4(\tau)d\tau)^2 + 4 \max_{|s| \leq \sqrt{C_T}} |H'(s)|^2 \int_0^s |u'_m(0, \tau)|^2d\tau. \]

Hence

\[\int_0^t ds \int_0^s |P'_m(\tau)|^2d\tau \leq 4t \int_0^t |g'(\tau)|^2d\tau + 4[k^2_3(0)C_T + k^2_2(0)]t^2 \]

\[+ \frac{4}{3}C_Tt^3 \int_0^t k^3_3(\tau)d\tau + 4t^2 \left(\int_0^t k_4(\tau)d\tau \right)^2 \]

\[+ 4 \max_{|s| \leq \sqrt{C_T}} |H'(s)|^2 \int_0^t ds \int_0^s |u'_m(0, \tau)|^2d\tau. \]
From this inequality, (2.41), and (2.42), it follows that
\[
\int_0^t ds \int_0^s K_m'(s - \tau) P_m(\tau) d\tau \leq 2 \int_0^t K_m^2(s) ds \left[(g(0) + H(u_{0m}(0)))^2 + 4t \int_0^t |g'(\tau)|^2 d\tau + 4[k_2^2(0)C_T + k_3^2(0)]^2 \right.+ \\
+ \frac{4}{3} C_T^3 t^3 \int_0^t k_2^3(\tau) d\tau + 4t^2 \left(\int_0^t k_4(\tau) d\tau \right)^2 + 4 \max_{|s| \leq \sqrt{C_T}} \left| H'(s) \right|^2 \int_0^t ds \int_0^s |u_m'(0, \tau)|^2 d\tau],
\]
(2.45)

Note that for every $T > 0$, $K_m \to \bar{K}$, strongly in $L^2(0, T)$ as $m \to +\infty$. Using the assumptions (G), (H), (K2) and the results (2.6) and (2.45), we obtain (2.40). The proof of Lemma 2.7 is complete. □

Lemma 2.8. There exist two positive constants $C_T^{(5)}$ and $C_T^{(6)}$ depending only on T such that
\[
\int_0^t |u_m'(0, \tau)|^2 d\tau \leq C_T^{(5)} \quad \forall t \in [0, T], \forall T > 0.
\]
(2.46)
\[
\int_0^t |P_m'(\tau)|^2 d\tau \leq C_T^{(6)} \quad \forall t \in [0, T], \forall T > 0.
\]
(2.47)

Proof. Since (2.47) is a consequence of (2.44) and (2.46), we only have to prove (2.46). From (2.39), using Lemmas 2.6 and 2.7, we obtain
\[
\int_0^t |u_m'(0, \tau)|^2 d\tau \leq 2 \int_0^t |\gamma_m'(s)|^2 ds + 8 \int_0^t ds \int_0^s K_m'(s - \tau) P_m(\tau) d\tau \leq 2C_2 + 2D(t) \int_0^t \|f(u_m(\tau), u_m'(\tau))\| d\tau
\]
(2.48)
\[
+ 8C_T^{(3)} + 8C_T^{(4)} \int_0^t ds \int_0^s |u_m'(0, \tau)|^2 d\tau.
\]

On the other hand, from the assumptions (F2), (F3), we obtain
\[
\|f(u_m(t), u_m'(t))\|^2 \leq 2\left(\max_{|s| \leq \sqrt{C_T}} B_1^2(s) \right) \|u_m'(t)\|^2 + 2B^2_2(0) \|u_m(t)\|^2 \|u_m(t)\|_V,
\]
(2.49)
since $0 < \alpha \leq 1$ we have $\| \cdot \| \leq \| \cdot \|_{L^2 \alpha}$. Hence, using (2.37) and (2.49) we have
\[
\|f(u_m(t), u_m'(t))\| \leq C_T^{(7)}.
\]
(2.50)

At last from this inequality and (2.48) we obtain the inequality
\[
\int_0^t |u_m'(0, s)|^2 ds \leq C_T^{(8)} + 8C_T^{(4)} \int_0^t ds \int_0^s |u_m'(0, \tau)|^2 d\tau,
\]
which implies (2.46), by Grönwall’s lemma. Therefore, Lemma 2.8 is proved. □

Step 2. Passing to limit. From (2.5), (2.29), (2.37), (2.46), (2.47), and (2.50), we deduce that, there exists a subsequence of sequence $\{ (u_m, P_m) \}$, still denoted by
\{ (u_m, P_m) \}, such that
\begin{align}
 u_m &\to u \quad \text{in } L^\infty(0,T;V) \text{ weak*}, \\
 u'_m &\to u' \quad \text{in } L^\infty(0,T;L^2) \text{ weak*}, \\
 u'_m(0,t) &\to u(0,t) \quad \text{in } L^\infty(0,T) \text{ weak*}, \\
 u'_m(0,t) &\to u'(0,t) \quad \text{in } L^2(0,T) \text{ weak}, \\
 f(u_m, u'_m) &\to \chi \quad \text{in } L^\infty(0,T;L^2) \text{ weak*}, \\
 P_m &\to \hat{P} \quad \text{in } H^1(0,T) \text{ weak},
\end{align}
(2.51)

By the compactness lemma of Lions (see \[9\]), we can deduce from (2.51)-(2.54) that there exists a subsequence still denoted by \{u_m\} such that
\begin{align}
 u_m(0,t) &\to u(0,t) \quad \text{strongly in } C^0([0,T]), \\
 u_m &\to u \quad \text{strongly in } L^\infty(0,T;V) \text{ a.e. } (x,t) \in Q_T.
\end{align}
(2.57)

By (H),(K) and using (2.5), (2.57) we obtain
\begin{align}
P_m(t) &\to g(t) + H(u(0,t)) - \int_0^t K(t-s, u(0,s))ds \equiv P(t) \quad \text{strongly in } C^0([0,T]).
\end{align}
(2.59)

From (2.56) and (2.59) we have
\begin{align}
P &\equiv \hat{P} \quad \text{a.e. in } Q_T.
\end{align}
(2.60)

Passing to the limit in (2.4) by (2.51), (2.52), (2.59), and (2.60) we have
\begin{equation}
\frac{d}{dt} \langle u'(t), v \rangle + a(u(t), v) + P(t)v(0) + \langle \chi, v \rangle = 0 \quad \forall v \in V.
\end{equation}

As in \[9\], we can prove that
\begin{align}
u(0) &= u_0, \quad u'(0) = u_1.
\end{align}

To prove the existence of solution \(u \), we have to show that \(\chi = f(u, u') \). We need the following lemma which proof can be found in \[2\].

Lemma 2.9. Let \(u \) be the solution of the problem
\begin{align}
 u_{tt} - u_{xx} + \chi &= 0, \quad 0 < x < 1, \quad 0 < t < T, \\
 u_t(0,t) &= P(t), \quad u(1,t) = 0, \\
 u(x,0) &= u_0(x), \quad u_t(x,0) = u_1(x), \\
 u &\in L^\infty(0,T;V), \quad u' \in L^\infty(0,T;L^2) \\
 u(0,\cdot) &\in H^1(0,T).
\end{align}

Then
\begin{equation}
\frac{1}{2} \|u'(t)\|^2 + \frac{1}{2} \|u(t)\|_V^2 + \int_0^t P(s)u'(0,s)ds + \int_0^t \langle \chi(s), u'(s) \rangle ds \geq \frac{1}{2} \|u_1\|^2 + \frac{1}{2} \|u_0\|_V^2,
\end{equation}
a.e. \(t \in [0,T] \). Furthermore, if \(u_0 = u_1 = 0 \) there is equality in the above expression.
Now, from (2.4) - (2.6) we have
\[\int_0^t \langle f(u_m(s), u'_m(s)), u'_m(s) \rangle ds = \frac{1}{2} \| u_{1m} \|^2 + \frac{1}{2} \| u_{0m} \|^2 - \frac{1}{2} \| u'_m(t) \|^2 - \frac{1}{2} \| u_m(t) \|^2 - \int_0^t P_m(s) u'_m(0, s) ds. \] (2.61)

By Lemma 2.9, it follows from (2.6), (2.51), (2.52), (2.54), (2.59) and (2.61), that
\[\limsup_{m \to + \infty} \int_0^t \langle f(u_m(s), u'_m(s)), u'_m(s) \rangle ds \leq \frac{1}{2} \| u_1 \|^2 + \frac{1}{2} \| u_0 \|^2 - \frac{1}{2} \| u'(t) \|^2 - \frac{1}{2} \| u(t) \|^2 - \int_0^t P(s) u'(0, s) ds \leq \int_0^t \langle \chi(s), u'(s) \rangle ds, \quad \text{a.e. } t \in [0, T]. \]

Using the same arguments as in [9], we can show that \(\chi = f(u, u') \) a.e. in \(Q_T \). The existence of the solution is proved.

Step 4. Uniqueness of the solution. Assume now that \(\beta = 1 \) in (F3), and that \(H, K, f \) satisfy (H1), (K3), and (F4). Let \((u_1, P_1), (u_2, P_2) \) be two weak solutions of the problem (1.1) - (1.5). Then \(u = u_1 - u_2, \ P = P_1 - P_2 \) satisfy the problem
\[
\begin{align*}
&u'' - u_{xx} + \chi = 0, \quad 0 < x < 1, \quad 0 < t < T, \\
&u_x(0, t) = P(t), \quad u(1, t) = 0, \\
&u(x, 0) = u'(x, 0) = 0, \\
&\chi = f(u_1, u'_1) - f(u_2, u'_2), \\
&P(t) = P_1(t) - P_2(t) \\
&= H(u_1(0, t)) - H(u_2(0, t)) \\
&\quad - \int_0^t (K(t - s, u_1(0, s)) - K(t - s, u_2(0, s))) ds, \\
&u_i \in L^\infty(0, T; V), \quad u'_i \in L^\infty(0, T; L^2), \quad u_i(0, \cdot) \in H^1(0, T), \\
&P_i \in H^1(0, T), \quad i = 1, 2.
\end{align*}
\]

Using Lemma 2.9 with \(u_0 = u_1 = 0 \), we obtain
\[\frac{1}{2} \| u'(t) \|^2 + \frac{1}{2} \| u(t) \|^2 \leq \frac{1}{2} \| u'(t) \|^2 + \frac{1}{2} \| u(t) \|^2 + \int_0^t P(s) u'(0, s) ds + \int_0^t \langle \chi(s), u'(s) \rangle ds = 0, \] (2.62)
a.e. \(t \in [0, T] \). Put
\[
\begin{align*}
\sigma(t) &= \| u'(t) \|^2 + \frac{1}{2} \| u(t) \|^2, \\
\tilde{H}_1(t) &= H(u_1(0, t)) - H(u_2(0, t)), \\
\tilde{K}_1(t, s) &= K(t - s, u_1(0, s)) - K(t - s, u_2(0, s)).
\end{align*}
\]
Substituting $P(t)$, χ into (2.62) and using that f is nondecreasing with respect to the second variable, we have
\[
\sigma(t) + 2 \int_0^t \bar{H}_1(s) u'(0, s) ds \\
\leq 2 \int_0^t ||f(u_1(s), u_2'(s)) - f(u_2(s), u_2'(s))|| ||u'(s)|| ds + 2 \int_0^t u'(0, s) ds \int_0^s \bar{K}_1(s, r) dr.
\]
(2.63)

Using assumption (F3),
\[
||f(u_1(s), u_2'(s)) - f(u_2(s), u_2'(s))|| \leq \|B_2([u_2'(s)])\| ||u(s)||_V.
\]

Using integration by parts in the last integral of (2.63), we get
\[
J = 2 \int_0^t u'(0, s) ds \int_0^s \bar{K}_1(s, r) dr \\
= 2u(0, t) \int_0^t \bar{K}_1(t, r) dr - 2 \int_0^t u(0, s) ds [\bar{K}_1(s, s) + \int_0^s \frac{\partial \bar{K}_1}{\partial s}(s, r) dr].
\]
(2.64)

From assumption (K3), we have
\[
|\bar{K}_1(s, r)| \leq p_{M, T}(t - r)|u(0, r)| \leq p_{M, T}(t - r)\sqrt{\sigma(r)}, \\
|\bar{K}_1(s, s)| \leq p_{M, T}(0)|u(0, s)| \leq p_{M, T}(0)\sqrt{\sigma(s)},
\]
(2.65)

where $M = \max_{i=1,2} \|u_i\|_{L^\infty(0, T, V)}$. It follows from (2.64) and (2.65) that
\[
|J| \leq 2\sqrt{\sigma(t)} \int_0^t p_{M, T}(t - r)\sqrt{\sigma(r)} dr + 2p_{M, T}(0) \int_0^t \sqrt{\sigma(s)} ds \\
+ 2 \int_0^t \sqrt{\sigma(s)} ds \int_0^s p_{M, T}(s - r)\sqrt{\sigma(r)} dr \\
\leq \beta_1 \sigma(t) + \frac{1}{\beta_1} \int_0^t p_{M, T}^2(r) dr \int_0^t \sigma(r) dr \\
+ 2p_{M, T}(0) \int_0^t \sigma(s) ds 2\sqrt{\bar{t}} \left(\int_0^t q_{M, T}^2(r) dr \right)^{1/2} \int_0^t \sigma(s) ds \\
= \beta_1 \sigma(t) + \left[2p_{M, T}(0) + \frac{1}{\beta_1} \int_0^t p_{M, T}^2(r) dr \right] \int_0^t \sigma(s) ds \\
+ 2\sqrt{\bar{t}} \left(\int_0^t q_{M, T}^2(r) dr \right)^{1/2} \int_0^t \sigma(s) ds,
\]
(2.66)

for all $\beta_1 > 0$. Put
\[
m_1 = \min_{|s| \leq M} H'(s), \quad m_2 = \max_{|s| \leq M} \max |H''(s)|.
\]
(2.67)

From assumption (H1) we have
\[
m_1 > -1.
\]
(2.68)
On the other hand, using integration by parts and (2.67) it follows that

\[2 \int_0^t \tilde{H}_1(s)u'(0,s)ds = 2 \int_0^t \left[\int_0^1 \frac{d}{d\theta} H(u_2(0,s) + \theta u(0,s))d\theta \right] u'(0,s)ds \]

\[= u^2(0,t) \int_0^1 H'(u_2(0,s) + \theta u(0,s))d\theta \]

\[- \int_0^t u^2(0,s)ds \int_0^1 H''(u_2(0,s) + \theta u(0,s))(u'_2(0,s) + \theta u'(0,s))d\theta \]

\[\geq m_1 u^2(0,t) - m_2 \int_0^t u^2(0,s)(|u'_1(0,s)| + |u'_2(0,s)|)ds \]

\[\geq m_1 u^2(0,t) - m_2 \int_0^t \sigma(s)(|u'_1(0,s)| + |u'_2(0,s)|)ds. \]

From the above inequality, (2.63)-(2.64) and (2.66), we obtain

\[\sigma(t) + m_1 u^2(0,t) \leq m_2 \int_0^t \sigma(s)(|u'_1(0,s)| + |u'_2(0,s)|)ds \]

\[+ \int_0^t \|B_2(|u'_2(s)|)\|\sigma(s)ds + |J| \equiv \eta(t). \] (2.69)

From (2.1), (2.68), and (2.69), we have

\[(1 + m_1)u^2(0,t) \leq \sigma(t) + m_1 u^2(0,t) \leq \eta(t). \] (2.70)

It follows from (2.69) and (2.70) that

\[\sigma(t) + [m_1 + \beta_2(1 + m_1)]u^2(0,t) \]

\[\leq (1 + \beta_2)\eta(t) \]

\[\leq (1 + \beta_2) \int_0^t \left[m_2(|u'_1(0,s)| + |u'_2(0,s)|) + B_2(|u'_2(0,s)|)\right] \sigma(s)ds \]

\[+ (1 + \beta_2)\beta_1 \sigma(t) + (1 + \beta_2) \left[2p_{M,T}(0) + \frac{1}{\beta_1} \int_0^t p^2_{M,T}(r)dr \right. \]

\[+ 2\sqrt{T} \left(\int_0^t q^2_{M,T}(r)dr \right)^{1/2} \right] \int_0^t \sigma(s)ds, \] (2.71)

for all \(\beta_1 > 0, \beta_2 > 0 \). Choose \(\beta_1 > 0, \beta_2 > 0 \) such that \(m_1 + \beta_2(1 + m_1) \geq 1/2 \), \((1 + \beta_2)\beta_1 \leq 1/2 \) and denote

\[R_1(t) = 2(1 + \beta_2)[m_2(|u'_1(0,s)| + |u'_2(0,s)|) + B_2(|u'_2(s)|)\]

\[+ \frac{1}{\beta_1} \|p_{M,T}\|^2_{L^2(0,T)} + 2p_{M,T}(0) + 2\sqrt{T}\|q_{M,T}\|_{L^2(0,T)}]. \] (2.72)

Then from (2.71) and (2.72) we have

\[\sigma(t) + u^2(0,t) \leq \int_0^t R_1(s)[\sigma(s) + u^2(0,s)]ds; \] (2.73)

i.e. \(\sigma(t) + u^2(0,t) = 0 \) by Gronwall’s lemma. Then Theorem 2.2 is proved. \(\square \)
In the special cases
\[
H(s) = hs, \quad h > 0;
\]
\[
K(t, u) = k(t)u, \quad k \in H^1(0, T), \quad \forall T > 0, k(0) = 0,
\]
the following theorem is a consequence of Theorem 2.2.

Theorem 2.10. Let (A), (G) and \((F_1)-(F_3)\) hold. Then, for every \(T > 0\), problem
\[
(1.1)- (1.4) \quad \text{and} \quad (1.9) \quad \text{has at least a weak solution } (u, P) \quad \text{satisfying } (2.2), (2.3).
\]
Furthermore, if \(\beta = 1\) in \((F_3)\) and \(B_2\) satisfies \((F_4)\), then this solution is unique.

We remark that Theorem 2.10 gives the same result as in [4], but we do not need the assumption “\(B_1\) is nondecreasing” used there.

In the special case with \(K(t, u) \equiv 0\), the following result is the consequence of Theorem 2.2.

Theorem 2.11. Let (A), (G), (H), \((F_1)-(F_3)\) hold. Then, for every \(T > 0\), the problem \((1.1) - (1.4)\) corresponding to \(P = g\) has at least a weak solution \(u\) satisfying \((2.2)\).

Furthermore, if \(\beta = 1\) in \((F_3)\) and the functions \(H, B_2\) satisfy the assumptions \((H_1), (F_4)\), then this solution is unique.

We remark that Theorem gives same result in [4] but without using the assumption “\(B_1\) is nondecreasing” used there.

3. Stability of the solutions

In this section, we assume that \(\beta = 1\) in \((F_3)\) and that the functions \(H, B_2\) satisfying \((H), (H_1), (F_4)\), respectively. By Theorem 2.2, problem \((1.1) - (1.3)\) admits a unique solution \((u, P)\) depending on \(g, H, K\):
\[
u = u(g, H, K), \quad P = P(g, H, K),
\]
where \(g, H, K\) satisfy the assumptions \((G), (H), (H_1), (K_1)-(K_3)\), and \(u_0, u_1, f\) are fixed functions satisfying \((A), (F_1)-(F_4)\).

Let \(h_0 > 0\) be a given constant and \(H_0 : \mathbb{R}^+ \to \mathbb{R}^+\) be a given function. We put
\[
\mathbb{R}(h_0, H_0) = \{ H \in C^2(\mathbb{R}) : H(0) = 0, \int_0^\infty H(s)ds \geq -h_0, \forall x \in \mathbb{R},
\]
\[
H'(s) > -1, \forall s \in \mathbb{R}, \sup_{|s| \leq M} \left(|H(s)| + |H'(s)| \right) \leq H_0(M), \forall M > 0 \}.
\]
Given \(t \geq 0, M > 0,\) and \(K \in C^0(\mathbb{R}_+ \times \mathbb{R}; \mathbb{R})\), we put
\[
N_h(M, K, t) = \sup\left[\sup_{u, v \leq M, u \neq v} |K(t, u) - K(t, v)| / (u - v)\right].
\]
Given the family \(\{p_{M,T}\}, M > 0, T > 0\) which consists of nonnegative functions \(p_{M,T}(t) = p(M, T, t), M > 0, T > 0\) such that \(p_{M,T} \in L^2(0, T)\), for all \(M, T > 0\).

Let \(k_1 \in L^2(0, T), k_2 \in L^1(0, T)\), for all \(T > 0\). We put
\[
\Gamma(k_1, k_2, \{p_{M,T}\})
\]
\[
= \{ K \in C^0(\mathbb{R}_+ \times \mathbb{R}) : \partial K / \partial t \in C^0(\mathbb{R}_+ \times \mathbb{R}),
\]
\[
N_h(M, K, t) + N_h(M, \partial K / \partial t, t) \leq p_{M,T}(t), \forall t \in [0, T], \forall M, T > 0,
\]
\[
|K(t, u)| + |\partial K / \partial t(t, u)| \leq k_1(t)|u| + k_2(t), \forall u \in \mathbb{R}, \forall t \in [0, T], \forall T > 0 \}.
\]
Then we have the following theorem.
Theorem 3.1. Let $\beta = 1$ and (A), (F1)–(F4) hold. Then, for every $T > 0$, the solutions of (1.1)-(1.5) are stable with respect to the data g, H, K; i.e., if (g, H, K), $(g_j, H_j, K_j) \in H^1(0, T) \times \Re(h_0, H_0) \times \Gamma(k_1, k_2, \{p_{M,T}\})$, are such that

$$(g_j, H_j) \to (g, H) \quad \text{in} \quad H^1(0, T) \times C^1([-M, M]) \quad (3.1)$$

strongly, and

$$(K_j, \partial K_j/\partial t) \to (K, \partial K/\partial t) \quad \text{in} \quad [C_0^0([0, T] \times [-M, M])]^2 \quad (3.2)$$

strongly, as $j \to +\infty$, for all $M, T > 0$. Then

$$(u_j, u'_j, u_j(0, t), P_j) \to (u, u', u(0, t), P)$$

in $L^\infty(0, T; V) \times L^\infty(0, T; L^2) \times C^0([0, T]) \times C^0([0, T])$ strongly, as $j \to +\infty$, for all $M, T > 0$, where $u_j = u(g_j, H_j, K_j)$, $P_j = P(g_j, H_j, K_j)$.

Proof. First, we note that if the data (g, H, K) satisfy

$$
\|g\|_{H^1(0, T)} \leq G_0, \quad H \in \Re(h_0, H_0), \quad K \in \Gamma(k_1, k_2, \{p_{M,T}\}),
$$

then, the a priori estimates of the sequences $\{u_m\}$ and $\{P_m\}$ in the proof of the Theorem 2.2 satisfy

$$
\|u'_m(t)\|^2 + \|u_m(t)\|_V^2 \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.4)
$$

$$
\int_0^t |u'_m(s)|^2 ds \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.5)
$$

$$
\int_0^t |P'_m(s)|^2 ds \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.6)
$$

where C_T is a constant depending only on $T, u_0, u_1, f, G_0, h_0, H_0, k_1, k_2, \{p_{M,T}\}$ (independent of g, H, K). Hence, the limit (u, P) in suitable function spaces of the sequence $\{(u_m, P_m)\}$ is defined by (2.4)–(2.6), which is a solution of (1.1)–(1.5) satisfying the a priori estimates (3.4)–(3.6).

Now, by (3.1)–(3.2) we can assume that there exists constant $G_0 > 0$ such that the data (g_j, H_j, K_j) satisfy (3.3) with $(g, H, K) = (g_j, H_j, K_j)$. Then, by the above remark, we have that the solutions (u_j, P_j) of problem (1.1)–(1.5) corresponding to $(g, H, K) = (g_j, H_j, K_j)$ satisfy

$$
\|u'_j(t)\|^2 + \|u_j(t)\|_V^2 \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.7)
$$

$$
\int_0^t |u'_j(s)|^2 ds \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.8)
$$

$$
\int_0^t |P'_j(s)|^2 ds \leq C_T^2 \quad \forall t \in [0, T], \forall T > 0, \quad (3.9)
$$

Put $\tilde{g}_j = g_j - g$, $\tilde{H}_j = H_j - H$, $\tilde{K}_j = K_j - K$. Then, $v_j = u_j - u$ and $Q_j = P_j - P$ satisfy the problem

$$
v''_j - v'_{jxx} + \chi_j = 0, \quad 0 < x < 1, \quad 0 < t < T,
$$

$$
v_j(x, 0) = Q_j(t), \quad v_j(1, t) = 0,
$$

$$
v_j(x, 0) = v'_j(x, 0) = 0,$$
where
\[\chi_j = f(u_j, u_j') - f(u, u'), \]
\[Q_j(t) = \tilde{g}_j(t) + H(u_j(0, t)) - H(u(0, t)) \]
\[- \int_0^t [K(t - s, u_j(0, s)) - K(t - s, u(0, s))] ds, \]
\[\tilde{g}_j(t) = \tilde{g}_j(t) + \tilde{H}_j(u_j(0, t)) - \int_0^t \tilde{K}_j(t - s, u_j(0, s)) ds. \] (3.11)

Applying Lemma 2.9 with \(u_0 = u_1 = 0, \chi = \chi_j, P = Q_j, \) we have
\[\|v_j'(t)\|^2 + \|v_j(t)\|_V^2 + 2 \int_0^t Q_j(s)v_j'(0, s)ds + 2 \int_0^t \langle \chi_j(s), v_j'(s) \rangle ds = 0. \]

Let
\[S_j(t) = \|v_j'(t)\|^2 + \|v_j(t)\|_V^2 + v_j^2(0, t), \]
\[M = C_T, \quad m_1 = \min_{|s| \leq M} H'(s) > -1, \quad m_2 = \max_{|s| \leq M} |H''(s)|. \]

Then, we can prove the following inequality in a similar manner
\[\|v_j'(t)\|^2 + \|v_j(t)\|_V^2 + m_1 v_j^2(0, t) \]
\[\leq \int_0^t \|B_2(|u'(s)|)\| S_j(t) ds + m_2 \int_0^t (|u'(0, s)| + |u_j'(0, s)|) S_j(s) ds \]
\[+ 2\varepsilon S_j(t) + \varepsilon \int_0^t S_j(s) ds + \frac{1}{\varepsilon} \tilde{g}_j^2(t) + \int_0^t |\tilde{g}_j'(s)|^2 ds \]
\[+ \left(\frac{1}{\varepsilon} \|p_{M,T} \|_{L^2(0,T)}^2 + 2\sqrt{T} \|p_{M,T} \|_{L^2(0,T)} \right) \int_0^t S_j(s) ds \] (3.12)
\[= 2\varepsilon S_j(t) + \frac{1}{\varepsilon} \tilde{g}_j^2(t) + \int_0^t |\tilde{g}_j'(s)|^2 ds \]
\[+ \int_0^t \|B_2(|u'(s)|)\| + m_2 (|u'(0, s)| + |u_j'(0, s)|) S_j(s) ds \]
\[+ \left(\varepsilon + \frac{1}{\varepsilon} \|p_{M,T} \|_{L^2(0,T)}^2 + 2\sqrt{T} \|p_{M,T} \|_{L^2(0,T)} \right) \int_0^t S_j(s) ds = y_j(t), \]
for all \(\varepsilon > 0 \) and \(t \in [0, T]. \)

We remark that \(v_j^2(0, t) \leq \|v_j(t)\|_V^2, \) consequently
\[(1 + m_1)v_j^2(0, t) \leq \|v_j'(t)\|^2 + \|v_j(t)\|_V^2 + m_1 v_j^2(0, t) \leq y_j(t). \] (3.13)

Multiplying the two members of \(3.13 \) by a number \(\beta_1 > 0 \) and adding to \(3.12, \) we have
\[\|v_j'(t)\|^2 + \|v_j(t)\|_V^2 + [(1 + m_1)\beta_1 + m_1]v_j^2(0, t) \]
\[\leq (1 + \beta_1) y_j(t) \]
\[\leq (1 + \beta_1)[2\varepsilon S_j(t) + \frac{1}{\varepsilon} \tilde{g}_j^2(t) + \int_0^t |\tilde{g}_j'(s)|^2 ds] \]
\[+ \int_0^t \tilde{R}_j(\varepsilon, T, s) S_j(s) ds, \quad \forall \varepsilon > 0, \beta_1 > 0, t \in [0, T]. \] (3.14)
where
\[
\tilde{R}_j(\varepsilon, T, s) = (1 + \beta_1) \left[\varepsilon + \frac{1}{\varepsilon} \| p_{M,T} \|_{L^2(0,T)}^2 + 2\sqrt{T} \| p_{M,T} \|_{L^2(0,T)} + \| B_2(u'(t)) \| + m_2(\| u'(0, s) \| + \| u'(0, s) \|) \right].
\] (3.15)

Choose \(\beta_1 > 0 \) and \(\varepsilon > 0 \) such that \((1 + m_1)\beta_1 + m_1 \geq 1 \), \(2\varepsilon (1 + \beta_1) \leq 1/2 \). From \(H^1(0, T) \hookrightarrow C^0([0, T]) \), and (3.14) we have
\[
S_j(t) \leq 2(1 + \beta_1) \frac{1}{\varepsilon} C_T^{(9)} \| \tilde{g}_j \|_{H^1(0,T)}^2 + 2 \int_0^t \tilde{R}_j(\varepsilon, T, s) S_j(s) ds,
\] (3.16)
where \(C_T^{(9)} \) is a constant depending only on \(T \). By Gronwall’s lemma, we obtain from (3.16) that
\[
S_j(t) \leq 2(1 + \beta_1) \frac{1}{\varepsilon} C_T^{(9)} \| \tilde{g}_j \|_{H^1(0,T)}^2 \exp \left(2 \int_0^T \tilde{R}_j(\varepsilon, T, s) S_j(s) ds \right),
\] (3.17)
for all \(t \in [0, T] \). On the other hand, we from (3.4), (3.10), (3.11), (3.15), and (3.17) obtain
\[
S_j(t) \leq C_T^{(10)} \| \tilde{g}_j \|_{H^1(0,T)}^2 \quad \forall t \in [0, T],
\] (3.18)
\[
|Q_j(t)| \leq |\tilde{g}_j(t)| + \max_{|s| \leq M} |H'(s)| \sqrt{S_j(t)} + \| p_{M,T} \|_{L^2(0,T)} \left(\int_0^t S_j(s) ds \right)^{1/2}.
\] (3.19)

We again use the embedding \(H^1(0, T) \hookrightarrow C^0([0, T]) \). Then, it follows from (3.18) and (3.19) that
\[
\| Q_j \|_{C^0([0, T])} \leq C_T^{(11)} \| \tilde{g}_j \|_{H^1(0,T)}^2.
\]
As a final step, we prove
\[
\lim_{j \to +\infty} \| \tilde{g}_j \|_{H^1(0,T)}^2 = 0.
\]
Indeed, from (3.11) combined with (3.8), we deduce the following inequality
\[
\| \tilde{g}_j \|_{H^1(0,T)} \leq \| \tilde{g}_j \|_{H^1(0,T)} + \sqrt{T + M^2} \| \tilde{H}_j \|_{C^1([-M,M])} + \sqrt{2T (1 + T^2)} \| \tilde{K}_j \|_{C^0([-0, T] \times [-M, M])} + \| \partial \tilde{K}_j / \partial t \|_{C^0([0, T] \times [-M, M])}.
\]
Then the proof is complete.

Acknowledgment. The authors thank Professor Dung L. and the referees for their valuable suggestions and help. \(\square\)

References

Thanh Long Nguyen
Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University HoChiMinh City, 227 Nguyen Van Cu Str., Dist.5, HoChiMinh City, Vietnam
E-mail address: longnt@hcmc.netnam.vn

Tien Dung Bui
Department of Mathematics, University of Architecture of HoChiMinh City, 196 Pasteur Str., Dist. 3, HoChiMinh City, Vietnam