Electron. J. Diff. Eqns., Vol. 2003(2003), No. 15, pp. 1-14.

A multiplicity result for a class of superquadratic Hamiltonian systems

Joao Marcos do O & Pedro Ubilla

We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ \lambda $, we consider the system
 -\Delta v  =  \lambda f(u) \quad \hbox{in } \Omega , \cr
 -\Delta u  =  g(v) \quad \hbox{in }  \Omega , \cr
         u  =  v=0 \quad \hbox{on }  \partial \Omega ,
where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ with $N\geq 1$. One solution is obtained applying Ambrosetti and Rabinowitz's classical Mountain Pass Theorem, and the other solution by a local minimization. \end{abstract}

Submitted May 15, 2002. Published February 14, 2003.
Math Subject Classifications: 35J50, 35J60, 35J65, 35J55.
Key Words: Elliptic systems, minimax techniques, Mountain Pass Theorem, Ekeland's variational principle, multiplicity of solutions.

Show me the PDF file (241K), TEX file, and other files for this article.

Joao Marcos do O
Departamento de Matematica
Universidade Federal da Paraiba
58059.900 Joao Pessoa, Pb Brazil
e-mail: jmbo@mat.ufpb.br
Pedro Ubilla
Universidad de Santiago de Chile
Cassilla 307, Correo 2, Santiago, Chile
e-mail: pubilla@lauca.usach.cl

Return to the EJDE web page