\documentclass[12pt]{article}
\usepackage{amsmath,mathrsfs,bbm}
\usepackage{amssymb}
\textwidth=4.825in
\overfullrule=0pt
\thispagestyle{empty}
\begin{document}
\noindent
%
%
{\bf R. Julian R. Abel, Diana Combe, Adrian M. Nelson and William D. Palmer}
%
%
\medskip
\noindent
%
%
{\bf GBRDs with Block Size Three over 2-Groups, Semi-Dihedral Groups and Nilpotent Groups}
%
%
\vskip 5mm
\noindent
%
%
%
%
There are well known necessary conditions for the existence of a
generalized Bhaskar Rao design over a group $\mathbb{G}$, with block
size $k=3$. We prove that they are sufficient for nilpotent groups
$\mathbb{G}$ of even order, and in particular for $2$-groups. In
addition, we prove that they are sufficient for semi-dihedral groups.
\end{document}