\documentclass[12pt]{article}
\usepackage{amsmath,mathrsfs,bbm}
\usepackage{amssymb}
\textwidth=4.825in
\overfullrule=0pt
\thispagestyle{empty}
\begin{document}
\noindent
%
%
{\bf N. L. Johnson, Giuseppe Marino, Olga Polverino and Rocco Trombetti}
%
%
\medskip
\noindent
%
%
{\bf A Generalization of Some Huang--Johnson Semifields}
%
%
\vskip 5mm
\noindent
%
%
%
%
In [{H. Huang, N.L. Johnson}: Semifield planes of order $8^2$, {\em
Discrete Math.}, {\bf 80} (1990)], the authors exhibited seven
sporadic semifields of order $2^6$, with left nucleus ${\mathbb
F}_{2^3}$ and center ${\mathbb F}_2$. Following the notation of that
paper, these examples are referred as the Huang--Johnson semifields
of type $II$, $III$, $IV$, $V$, $VI$, $VII$ and $VIII$. In [{N.~L.
Johnson, V. Jha, M. Biliotti}: {\it Handbook of Finite Translation
Planes}, Pure and Applied Mathematics, Taylor Books, 2007], the
question whether these semifields are contained in larger families,
rather then sporadic, is posed. In this paper, we first prove that
the Huang--Johnson semifield of type $VI$ is isotopic to a cyclic
semifield, whereas those of types $VII$ and $VIII$ belong to
infinite families recently constructed in [{N.L. Johnson, G. Marino,
O. Polverino, R. Trombetti}: Semifields of order $q^6$ with left
nucleus ${\mathbb F}_{q^3}$ and center ${\mathbb F}_q$, {\em Finite
Fields Appl.}, {\bf 14} (2008)] and [{G.L. Ebert, G. Marino, O.
Polverino, R. Trombetti}: Infinite families of new semifields, {\it
Combinatorica}, {\bf 6} (2009)]. Then, Huang--Johnson semifields of
type $II$ and $III$ are extended to new infinite families of
semifields of order $q^6$, existing for every prime power $q$.
\end{document}