\documentclass[12pt]{article}
\usepackage{amsmath,mathrsfs,bbm}
\usepackage{amssymb}
\textwidth=4.825in
\overfullrule=0pt
\thispagestyle{empty}
\begin{document}
\noindent
%
%
{\bf Jean-Baptiste Gramain}
%
%
\medskip
\noindent
%
%
{\bf On a Conjecture of G. Malle and G. Navarro on Nilpotent Blocks}
%
%
\vskip 5mm
\noindent
%
%
%
%
In a recent article, G. Malle and G. Navarro conjectured that the $p$-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Brou\'e and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group $2.{\mathfrak A}_n$ of the alternating group ${\mathfrak A}_n$, thereby solving a case excluded from the study of quasi-simple groups by Malle and Navarro.
\end{document}