\documentclass[12pt]{article}
\usepackage{amsmath,mathrsfs,bbm}
\usepackage{amssymb}
\textwidth=4.825in
\overfullrule=0pt
\thispagestyle{empty}
\begin{document}
\noindent
%
%
{\bf Daniele D'Angeli and Alfredo Donno}
%
%
\medskip
\noindent
%
%
{\bf Weighted Spanning Trees on some Self-Similar Graphs}
%
%
\vskip 5mm
\noindent
%
%
%
%
We compute the complexity of two infinite families of finite
graphs: the Sierpi\'{n}ski graphs, which are finite approximations
of the well-known Sierpi\'nski gasket, and the Schreier graphs of
the Hanoi Towers group $H^{(3)}$ acting on the rooted ternary
tree. For both of them, we study the weighted generating functions
of the spanning trees, associated with several natural labellings
of the edge sets.
\end{document}