Purity and Direct Summands

Pureza y Sumandos Directos

Ángel V. Oneto R.
Laboratorio de Álgebra Teórica y Computacional (LATyC)
Departamento de Matemática y Computación
Facultad Experimental de Ciencias. Universidad del Zulia.
(E-mail: aoneto@@luz.ve)

Abstract

A criteria for a pure submodule to be a direct summand is given and some applications are derived.
Key words and phrases: Pure submodule, flat module, regular ring.

Resumen

Se da un criterio para que un submódulo puro sea sumando directo y se deducen algunas aplicaciones.
Palabras y frases clave: Submódulo puro, módulo plano, anillo regular.

1 Preliminaries

In what follows \(R \) will denote an associative ring with identity and \(R \)-module will mean unitary left \(R \)-module. Recall that a short exact sequence of \(R \)-modules:

\[
0 \rightarrow N \rightarrow M \rightarrow F \rightarrow 0
\]

*Este artículo fue financiado parcialmente por la División de Investigación de la Facultad Experimental de Ciencias de La Universidad del Zulia a través del proyecto de investigación No. PNC-002-95
is pure if it remains exact after being tensored with any right \(R \)-module. If \(N \) is a submodule of a \(R \)-module \(M \) and the canonical short exact sequence

\[
0 \to N \to M \to M/N \to 0
\]

is pure, then we say that \(N \) is a pure submodule of \(M \). It follows at once that:

Lemma 1 Every direct summand is a pure submodule.

For completeness we sketch a proof of the following well known result

Lemma 2 Let

\[
0 \to N \to P \to F \to 0
\]

be a short exact sequence of \(R \)-modules with \(P \) flat. The sequence is pure exact \(\iff \) \(F \) is flat.

Proof: Both implications can be obtained by diagram chasing. For example, assume \(F \) flat. We have to prove that

\[
0 \to M \otimes N \to M \otimes P \to M \otimes F \to 0
\]

is exact for any right \(R \)-module \(M \). Choose a short exact sequence

\[
0 \to S \to L \to M \to 0
\]

with \(L \) free. The result follows by diagram chasing applied to the following diagram with exact rows and columns:

\[
\begin{array}{c}
0 \\
\downarrow \\
S \otimes N \to L \otimes N \to M \otimes N \to 0 \\
\downarrow \\
S \otimes P \to L \otimes P \to M \otimes P \to 0 \\
\downarrow \\
0 \to S \otimes F \to L \otimes F \to M \otimes F \to 0 \\
\downarrow \\
0 \\
\end{array}
\]

Recall the characterization of a (Von Neumann) regular ring as a ring \(R \) such that every \(R \)-module is flat. From this and the above definition of purity it follows (noted by Gentile [2]) that:
Lemma 3 R is a regular ring if and only if any submodule (of any R-module) is pure.

Recall also the following characterization of purity due to P. M. Cohn [1]: a submodule N of an R-module M is pure if and only if for any finite family $(x_i)_{i=1}^m$ of elements of N, any finite family $(y_j)_{j=1}^n$ of elements of M, and relations

$$x_i = \sum_j a_{ij}y_j \quad (a_{ij} \in R, \ i = 1, \ldots, m, \ j = 1, \ldots, n)$$

there exist $z_1, \ldots, z_n \in N$ such that

$$x_i = \sum_j a_{ij}z_j$$

2 Some purity results

The next theorem is a partial converse of Lemma 1:

Theorem 4 If P is a projective R-module and N a finitely generated pure submodule of P, then N is a direct summand of P.

Proof: Suppose first that P is free with basis $(e_j)_{j \in J}$. Choose a finite set $(x_i)_{i=1}^m$ of generators of N. We have

$$x_i = \sum_{j \in J_0} a_{ij}e_j \quad (i = 1, \ldots, m)$$

for some $a_{ij} \in R$ and finite $J_0 \subset J$. By purity there exist $z_j \in N (j \in J_0)$ such that

$$x_i = \sum_{j \in J_0} a_{ij}z_j$$

Define $\alpha: P \to N$ by $\alpha(e_j) = z_j$ if $j \in J_0$ and $\alpha(e_j) = 0$ if $j \notin J_0$. If $\beta: N \to P$ is the inclusion map, we have $\alpha\beta = 1_N$ and so N is a direct summand of P. For the general case, there exists a free R-module L such that P is a direct summand of L. By the particular case N is a direct summand of L

$$L = N \oplus N'$$
then $P = N \bigoplus (N' \cap P)$ and N is a direct summand of P.

Now we give a criteria of purity:

Proposition 5 Let N be a submodule of a R-module M. If N is projective and every map $f : N \rightarrow R$ can be extended to a map $f' : M \rightarrow R$, then N is a pure submodule of M.

Proof: Consider the situation

$$x_i = \sum_j a_{ij}y_j$$

where $x_i \in N$, $y_j \in M$, $a_{ij} \in R$ for $i = 1, \ldots, m$, $j = 1, \ldots, n$. Being N projective there exist a set of generators $(e_h)_{h \in H}$ of N and a set $(f_h)_{h \in H}$ of linear functionals $f_h : N \rightarrow R$ such that for each $x \in N$, $f_h(x) = 0$ for almost all h, and

$$x = \sum_h f_h(x)e_h$$

By hypothesis f_h extends to $f'_h : M \rightarrow R$ and then

$$f_h(x_i) = \sum_j a_{ij}f'_h(y_j) \quad \forall h \in H.$$

So

$$x_i = \sum_h f_h(x_i)e_h = \sum_j a_{ij}(\sum_h f'_h(y_j)e_h)$$

and N is a pure submodule of M.

3 Applications

In this section we show the ubiquity of Theorem 4, obtaining results that arises in several different contexts.

The first application is a classical theorem due to Villamayor:

Corollary 6 A finitely presented flat module is projective.
Proof: Let F be a finitely presented and flat R-module. We have an exact sequence

\[0 \to N \to L \to F \to 0 \]

where L is free and N a finitely generated submodule of L. By Lemma 2, N is a pure submodule of L and, by Theorem 4, a direct summand of L (i.e. the sequence splits). Hence F is projective.

The next result is due to Kaplansky ([3], Th.1.11).

Corollary 7 If P is a projective module over a regular ring then every finitely generated submodule of P is a direct summand.

Proof: Since over a regular ring every submodule (of any module) is pure (Lemma 3), the result follows from Theorem 4.

As a final application we give a variation of a result due to Gentile ([2], Prop. 3.1). Recall that a left semihereditary ring is a ring such that every finitely generated submodule of a finitely generated projective module is also projective.

Corollary 8 A ring R is regular if and only if it is left semihereditary and for any finitely generated projective R-module P, and any finitely generated submodule N of P, every map $f: N \to R$ extends to $f: P \to R$.

Proof: Assume R regular and let N be a finitely generated submodule of a finitely generated projective R-module P. By Lemma 3 and Theorem 4, N is a direct summand of P. It follows that R is left semihereditary and the property of extension of maps holds. Conversely (recall the characterization of a regular ring as a ring such that any finitely generated left ideal is a direct summand) let I be a finitely generated left ideal of R. Being R semihereditary I is projective and then by Proposition 5 it is a pure submodule of R. Finally, by Theorem 4, I is a direct summand of R.

4 Final comment

Theorem 4, as one of the referees pointed out to the author, may also be obtained as a consequence of a result of O. Villamayor (see Lemma 2.2 in [4]).
References

