A short proof on lifting of projection properties in Riesz spaces

MAREK WÓJTOWICZ

Abstract. Let L be an Archimedean Riesz space with a weak order unit u. A sufficient condition under which Dedekind σ-completeness of the principal ideal A_u can be lifted to L is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of $C(X)$-spaces. Similar results are obtained for the Riesz spaces $B_n(T), n = 1, 2, \ldots$, of all functions of the nth Baire class on a metric space T.

Keywords: Dedekind completeness, spaces of continuous functions, spaces of Baire functions

Classification: 46A40, 26A99, 46B30

The purpose of this note is to give a short and concise proof of the following result established by Luxemburg and Zaanen ([3, Theorems 43.2 and 43.3]).

Theorem. Let $C(X)$ and $C_b(X)$, respectively, denote the Riesz spaces of all real continuous and continuous and bounded, respectively, functions on a topological space X. Then the following conditions are equivalent.

(i) $C(X)$ has the [principal] projection property.

(ii) $C(X)$ is Dedekind σ-complete.

(iii) $C_b(X)$ has the [principal] projection property.

(iv) $C_b(X)$ is Dedekind σ-complete.

As remarked in ([3, p. 283]), the only nontrivial implication is (iv) \Rightarrow (ii). Our proof replaces a large part of the direct argument in [3] by an appeal to a lemma (see below), inspired by the classical proof of the Tietze extension theorem ([1, p. 158], the unbounded case).

Let S be a nonempty set. In the rest of the paper L denotes a Riesz subspace of the Riesz space \mathbb{R}^S (pointwise ordering) containing the constant-one on S function e, and B_e denotes the set $\{f \in L : |f(s)| < 1, s \in S\}$. It is obvious that B_e is a (nonlinear) sublattice of A_e. The symbol \circ denotes composition of functions.

Lemma. If there exists a strictly increasing and continuous function ϕ from \mathbb{R} onto $(-1, 1)$ such that both

(a) $\phi \circ f \in B_e$ for every $f \in L$, and

(b) $\phi^{-1} \circ g \in L$ for every $g \in B_e$,
then \(L \) and \(B_e \) are order isomorphic as partially ordered sets. In particular, Dedekind \([\sigma\text{-}]\) completeness of \(A_e \) implies Dedekind \([\sigma\text{-}]\) completeness of \(L \).

Examples. 1. If \(L = C(X) \) then every strictly increasing, continuous and onto function \(\phi : \mathbb{R} \to (-1,1) \) fulfills both (a) and (b), and the same holds for the Riesz spaces \(B_n(T) \), \(n = 1, 2, \ldots \), of all functions \(T \to \mathbb{R} \) of the \(n \)th class on a metric space \(T \).

2. If \(L \) consists of all continuous and piecewise functions on \([0,1]\), then \(\phi \) must be piecewise linear to fulfill the condition (a).

Proof of Lemma: By (a) and (b), \(L \) and \(B_e \) are order isomorphic as partially ordered sets (in the sense of the definition given in [3, p.186]) via the mapping \(\hat{\phi}(f) = \phi \circ f, f \in L \). Since, by ([3, Definitions 1.1 and 23.1]), Dedekind \([\sigma\text{-}]\) completeness both is invariant under such isomorphisms and is hereditated from \(A_e \) by \(B_e \), the result follows.

Proof of Theorem (the nontrivial implication (iv) \(\Rightarrow \) (ii)): It follows by Lemma and Example 1.

Remark. Since bounded functions of the \(n \)th Baire class \(B^0_n(T) \), \(n = 1, 2, \ldots \), endowed with the sup-norm form AM-spaces with units ([2, Theorem 12.3.7]), the notions of the [principal] projection property and Dedekind \([\sigma\text{-}]\) completeness coincide (by Theorem). Moreover, Lemma and Example 1 prove that \(B^0_n(T) \) and \(B_n(T) \) are Dedekind \([\sigma\text{-}]\) complete simultaneously. These observations yield the result similar to that of Theorem when \(C(X) \) is replaced by \(B_n(T) \) and \(C_b(X) \) by \(B^0_n(T) \).

References

Institute of Mathematics, Pedagogical University, Pl. Słowiański 9, 65–069 Zielona Góra, Poland

E-mail: marekw@omega.im.wsp.zgora.pl

(Received May 25, 1998)