Condensations of Cartesian products

OLEG PAVLOV

Abstract. We consider when one-to-one continuous mappings can improve normality-type and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space X there is a μ such that X^μ can be condensed onto a normal (σ-compact) space if and only if there is no measurable cardinal. For any Tychonoff space X and any cardinal ν there is a Tychonoff space M which preserves many properties of X and such that any one-to-one continuous image of M^μ, $\mu \leq \nu$, contains a closed copy of X^μ. For any infinite compact space K there is a normal space X such that $X \times K$ cannot be mapped one-to-one onto a normal space.

Keywords: condensation, one-to-one, compact, measurable

Classification: 54C10, 54A10

0. Introduction

We consider only Tychonoff topological spaces and continuous mappings. A condensation is a one-to-one mapping onto. Throughout the paper κ denotes the first Ulam-measurable cardinal, if such a cardinal exists.

It is well-known that many key topological properties are not multiplicative. However, for many examples of a given property P and a space (X, τ) which has P, but X^2 does not, there is a weaker topology τ' on X such that the square of (X, τ') does have P. In fact, many examples are produced starting with the space (X, τ'). This observation motivated A.V. Arhangel’skii to raise the following questions. Is it true that for any Lindelöf space X there is a condensation $f : X \to Z$ such that Z^2 is Lindelöf (see [1])? Is it true that the second power of any normal (hereditarily normal, paracompact, Lindelöf, pseudocompact, countably compact, etc.) space can be condensed onto a space with the same property? Can any power of a Lindelöf space be condensed onto a Lindelöf space ([1])? Is it true that \mathbb{Q}^μ can be condensed onto a Lindelöf (compact) space for any infinite μ? These questions are in line with the most general problem concerning condensations: when can a space from class A be condensed onto a space from B, for some A and B? B is “better” than A in some sense.

R. Buzyakova answered several of these questions negatively. She constructed a normal countably compact space in [3] and a Lindelöf space in [4], whose squares cannot be condensed onto a normal space (A.N. Yakivchik constructed earlier in [10] a Hausdorff non-regular finally compact space whose square cannot be condensed onto a Hausdorff finally compact space). We generalize these results
in Corollary 1: for any space \(X \) and a cardinal \(\nu \) there is a larger space \(M \) which preserves many properties of \(X \) and contains many clopen copies of \(X \) in such a way, that for any \(\mu \leq \nu \) and for each condensation \(f : M^\mu \to Z \), \(Z \) contains a closed copy of \(X^\mu \). Thus, condensations cannot improve most non-multiplicative properties of arbitrary large (but a priori fixed) powers. If also all powers of \(X \) are \(\tau \)-compact for some \(\tau \), then there is an \(M \) such that for any \(\mu \), \(f(M^\mu) \) contains a closed copy of \(X^\mu \).

E.G. Pytkeev proved in [9] that any separable metrizable non \(\sigma \)-compact Borel space can be condensed onto \(I^\nu \). Since \(Q^\omega \) is Borel (as a one-to-one continuous image of \(N^\omega \), see [8]) and not \(\sigma \)-compact (\(N^\omega \) is closed in \(Q^\omega \)), \(Q^\omega \) can be condensed onto \(I^\nu \). Therefore \(Q^\mu \) can be condensed onto \(I^\mu \) for any infinite \(\mu \). This solves one of the mentioned questions. It turns out that a somewhat similar result holds for most Lindelöf spaces. We show in Theorem 1 that for any non-pseudocompact \(X \) with \(|X| < \kappa \), \(X^\mu \) can be condensed onto a \(\sigma \)-compact space for many \(\mu < \kappa \). On the contrary, if \(\kappa \) does exist, then no power of some non-pseudocompact spaces (of cardinality \(\geq \kappa \)) can be condensed onto a normal space (Corollary 3).

1. Condensation onto a \(\sigma \)-compact space

Theorem 1. Let \(X \) be a non-pseudocompact Tychonoff space and let \(|X| \) be non Ulam-measurable. Let \(|X| \leq \mu_0 < \kappa \) and for every \(k \in \omega \), \(\mu_{k+1} = \exp(\mu_k) \) and \(\mu = \sup\{\mu_k : k \in \omega\} \). Then \(X^\mu \) can be condensed onto a regular \(\sigma \)-compact space.

Proof: Let \(\alpha_0 = |\beta X| \) and for any \(k \in \omega \), \(\alpha_{k+1} = \exp(\alpha_k) \). Then for \(\alpha = \sup\{\alpha_n : n \in \omega\} \), \(\alpha = \mu \). Let \(f \in C(X, [0, \infty)) \) be such that for each \(i \in \omega \) there is \(b_i \in f^{-1}(i + 0.5) \). Let \(K = \beta X \), \(\tilde{K} = \{x \in K : f \text{ can be extended on } X \cup \{x\}\} \) and let \(\tilde{f} \) be an extension of \(f \) on \(\tilde{K} \). We denote \(K = \tilde{K} \times \prod\{K_\gamma : 1 \leq \gamma < \alpha\} \) and \(X = \prod\{X_\gamma : \gamma < \alpha\} \), where \(K_\gamma \) and \(X_\gamma \) are copies of \(K \) and \(X \) respectively. Then \(K \) is a \(T_1 \) regular \(\sigma \)-compact space.

For any \(i \in \omega \), let \(A_i = \{a_{ij} \in \omega : a_{i_0} = i\} \) be an increasing sequence such that for \(i \neq j \), \(A_i^+ \cap A_j^+ = \emptyset \) where \(A_i^+ = A_i \setminus \{a_{i_0}\} \). By induction, a mapping \(\phi : \omega \to \omega \) can be defined such that

1. if \(i \notin \bigcup\{A_i^+ : i \in \omega\} \), then \(\phi(i) = 0 \), and
2. if \(j \geq 1 \), then \(\phi(a_{ij}) = \phi(i) + j + 1 \).

Let \(C_0 = \tilde{f}^{-1}([0;1]) \) and for \(i \in \omega \), \(C_{i+1} = \tilde{f}^{-1}([i + \frac{1}{2}i + 2]) \setminus C_i \); \(C_i = C_i \times \prod\{K_\gamma : 1 \leq \gamma < \alpha\} \).
For \(i, j \in \omega, j \geq 1 \), let \(F_{ij,0} = b_{aij} \times \prod \{ K_\gamma : 1 \leq \gamma \leq \alpha_{\phi(aij)} \} \), and for \(1 \leq \Delta < \alpha \), \(F_{ij,\Delta} = \prod \{ K_\gamma : \alpha_{\phi(aij)} \cdot \Delta < \gamma \leq \alpha_{\phi(aij)} \cdot (\Delta + 1) \} \) (here we use a product of ordinals, see [7]), then \(b_{aij} \times \prod \{ K_\gamma : 1 \leq \gamma < \alpha \} = \prod \{ F_{ij,\Delta} : \Delta < \alpha \} \).

For any \(i, j \in \omega \), \(j \geq 1 \) and \(\Delta \geq 1 \) we denote \(M_{ij,0} = b_{aij} \times \prod \{ X_\gamma : 1 \leq \gamma \leq \alpha_{\phi(aij)} \} \) and \(M_{ij,\Delta} = \prod \{ X_\gamma : \alpha_{\phi(aij)} \cdot \Delta < \gamma \leq \alpha_{\phi(aij)} \cdot (\Delta + 1) \} \). Then \(M_{ij,0} \subseteq F_{ij,0} \) and \(M_{ij,\Delta} \subseteq F_{ij,\Delta} \). Each \(M_{ij,\Delta} \), \(\Delta \geq 0 \), contains a closed discrete subset \(H_{ij,\Delta} \) of cardinality \(\alpha_{\phi(aij)} - 1 \) which is also \(C^* \)-embedded in \(F_{ij,\Delta} \). Indeed, \(M_{ij,0} \approx M_{ij,0} \times M_{ij,0} \).

The first factor contains a closed discrete subset of cardinality \(\alpha_{\phi(aij)} - 1 \) by a theorem from [6] (since \(M_{ij,0} \) is a \(\alpha_{\phi(aij)} \)-power of a non countably compact space \(X \)). The second factor contains a \(C^* \)-embedded subset of the same cardinality. The diagonal product of these subsets is a required set \(H_{ij,\Delta} \). Let us denote \(\tilde{H}_{ij,\Delta} = \overline{\bigcap_{\tau = 1}^{\Delta} F_{ij,\tau}} \). For each \(\tau, C_{i,|\tau|} \) denotes projection of \(C \) onto ordinals not greater than \(\tau \).

If \(i \in \omega, k \geq 1 \) and \(\phi(i) = 0 \), let

\[
C_{i0} = C_{i,|\leq \alpha_0} \setminus \prod \{ X_\gamma : \gamma \leq \alpha_0 \},
\]

and

\[
C_{ik} = \{ x \in (C_{i,|\leq \alpha_k} \setminus \prod \{ X_\gamma : \gamma \leq \alpha_k \}) : x_{|\leq \alpha_{k-1}} \in \prod \{ X_\gamma : \gamma \leq \alpha_{k-1} \} \}.
\]

If \(n, k \geq 1 \) and \(i = a_{jn} \), let

\[
C_{i0} = C_{i,|\leq \alpha_{\phi(i)}} \setminus (\prod \{ X_\gamma : \gamma \leq \alpha_{\phi(i)} \} \cup H_{jn,0}),
\]

and

\[
C_{ik} = \{ x \in (C_{i,|\leq \alpha_{\phi(i)+k}} \setminus \prod \{ \tilde{H}_{jn,\Delta} : \Delta < \alpha \})_{|\leq \alpha_{\phi(i)+k}} : x_{|\leq \alpha_{\phi(i)+k}} \}, \text{ and } x_{\phi(i)+k-1} \in \prod \{ X_\gamma : \gamma \leq \alpha_{\phi(i)+k-1} \}.
\]

Then for every \(i, j \in \omega, |C_{ij}| = \exp(\alpha_{\phi(i)+j}) = \alpha_{\phi(i)+j+1} \). Let also \(C_{ik} = C_{ik} \times \prod \{ K_\gamma : \alpha_{\phi(i)+k} < \gamma < \alpha \} \). Therefore, if \(\phi(i) = 0 \), then \(\{ C_{ik} : k \in \omega \} \) is a partition of \(C_{i} \setminus \mathcal{X} \). If \(\phi(i) \neq 0 \) and \(i = a_{jn} \), then \(\{ C_{ik} : k \in \omega \} \) is a partition of \(C_{i} \setminus (\mathcal{X} \cup \bigcup \{ \tilde{H}_{jn,\Delta} : \Delta < \alpha \}) \).

For \(i, j \in \omega, j \geq 1 \), let \(\psi_{ij,0} \) be a one-to-one mapping of \(H_{ij,0} \) onto \(C_{i(j-1)} \).

Such a mapping exists since \(|H_{ij,0}| = \alpha_{\phi(aij)-1} = \alpha_{(\phi(i)+j+1)-1} = \alpha_{\phi(i)+j} = |C_{i(j-1)}| \). This mapping can be extended to a continuous mapping \(\tilde{\psi}_{ij,0} : H_{ij,0} \rightarrow C_{i(j-1)} \). In the same way for \(i, j \in \omega, j \geq 1 \) and \(1 \leq \Delta < \alpha \) there is a one-to-one continuous mapping \(\tilde{\psi}_{ij,\Delta} \) of \(H_{ij,\Delta} \) onto \(F_{ij,\Delta} \). This mapping can be extended to a continuous mapping \(\tilde{\psi}_{ij,\Delta} : H_{ij,\Delta} \rightarrow F_{ij,\Delta} \). For any \(i, j \in \omega, j \geq 1 \), let \(\tilde{\psi}_{ij} = \prod \{ \tilde{\psi}_{ij,\Delta} : \Delta < \alpha \} : \prod \{ H_{ij,\Delta} : \Delta < \alpha \} \rightarrow C_{i} \) and \(\psi_{ij} = \tilde{\psi}_{ij} |\mathcal{X} \). It then follows that \(\tilde{\psi}_{ij} \) is a mapping “onto” and that \(\psi_{ij} \) is a condensation of \(\prod \{ H_{ij,\Delta} : \Delta < \alpha \} \) onto \(C_{i(j-1)} \).
For $i, j \in \omega$, $j \geq 1$, let $D_{ij} = \text{Dom}(\tilde{\psi}_{ij})$, then $\tilde{\psi}_{ij}$ induces an upper semicontinuous decomposition E_{ij} of D_{ij} since D_{ij} is compact. We define a decomposition E of \mathcal{K} as follows:

1. if $x \notin \bigcup\{D_{ij} : i, j \in \omega, j \geq 1\}$, then $xEy \leftrightarrow x = y$;
2. if $j_0 \geq 1$ and $x \in D_{i_0j_0}$, then xEy if and only if $y \in D_{i_0j_0}$ and $xE_{i_0j_0}y$.

This decomposition is well defined and it is upper semicontinuous since $\{D_{ij} \subset \mathcal{K} : i, j \in \omega, j \geq 1\}$ is a locally finite family of disjoint closed subsets of \mathcal{K}. Then the quotient mapping $q : \mathcal{K} \rightarrow \mathcal{K}' = \mathcal{K}/E$ is closed, therefore \mathcal{K}' is a T_1 regular σ-compact space. For $i \in \omega$, let $D_{i0} = \overline{C_i}$, $D_i = \bigcup\{D_{ij} : j \in \omega\}$, $\mathcal{K}_i = \bigcup\{D_j : j \leq i\}$ and $G_i = \bigcup\{\overline{C_j} : j \leq i\}$. By a theorem from [2] the space \mathcal{K} is an inductive limit of its closed subsets \mathcal{K}_i and also of the compacta G_i. The same is true for the space \mathcal{K}' and sets $\mathcal{K}'_i = q(\mathcal{K}_i)$ and $G'_i = q(G_i)$ since q is a quotient mapping. Let $D'_i = q(D_i)$, $D'_{ij} = q(D_{ij})$ and $\mathcal{X}' = q(\mathcal{X})$.

We claim that $q_{|\mathcal{X}'}$ is a condensation. To see this, note that from the definition of the decomposition E it is sufficient to prove that $q_{|D_{ij} \cap \mathcal{X}'}$ is a condensation. But this is obvious since E_{ij} is generated by a mapping $\tilde{\psi}_{ij}$ whose restriction ψ_{ij} is a condensation. In general, \mathcal{X}' is not a σ-compact space. The desired condensation of \mathcal{X}' onto a σ-compact space will be a restriction $g_{|\mathcal{X}'}$ of a quotient map $g : \mathcal{K}' \rightarrow g(\mathcal{K}')$ which we define at the end of the proof. g will be the limit of maps g_i, $i \in \omega$, which are defined below, in the sense of Lemma 1. It will be constructed in such a way that $g(\mathcal{X}') = g(\mathcal{K}')$ which ensures that $g(\mathcal{X}')$ is σ-compact. In the next paragraph we introduce an auxiliary notation which will be used in the definition of maps g_i.

Let H be a closed subset of some topological space M, and let h be a quotient mapping of H. Then h induces a decomposition E_H of H and an associate decomposition E_M of M by the rules: if $x \notin H$, then $xE_Hy \leftrightarrow x = y$; if $x \in H$, then $xE_Hy \leftrightarrow y \in H$ and xE_Hy. The decomposition E_M defines a quotient mapping of M, which we will denote by $h_{H,M}$. It is clear that if h is closed then so is $h_{H,M}$, that $h_{H,M|M \setminus H}$ is a homeomorphism, and that $h_{H,M}(M \setminus H) \cap h_{H,M}(H) = \emptyset$.

Let us define quotient mappings g_{-1}, $g_{-1,0}$ and g_i, $g_{i,i+1}$ as follows:

1. $g_{-1} \equiv id_{\mathcal{K}'}$;
2. if g_{i-1} is already defined, then $g_{i-1,i} = g_{i-1,i}g_{i-1}(D'_{i})g_{i-1}(\mathcal{K}')$ and $g_i = g_{i-1,i} \circ g_{i-1}$;
3. let $g_{i-1,i}g_{i-1}(D')$ be a quotient mapping corresponding to decomposition E'_{i} of the space $g_{i-1}(D'_{i})$, where for $y \in \overline{C_i}$, $E'_{i}(g_{i-1}(q(y))) = \{g_{i-1}(q(y))\} \cup \{g_{i-1}(q(X)) : \text{there is } j \geq 1, x \in D_{i,j} \text{ and } \tilde{\psi}_{i,j}(x) = y\}$.

The following are the properties of the mappings g_{i-1}, $g_{i-1,i}$ for $i \in \omega$:

a. $g_{i-1}(\mathcal{K})$ is a T_1 normal space;
b. every compact $g_{i-1}(D'_{in})$ ($n \in \omega$) has a neighborhood $U_{i,n}$ in $g_{i-1}(\mathcal{K}')$ such that $\{U_{i,n} : n \in \omega\}$ is a discrete family in $g_{i-1}(\mathcal{K})$;
Now let mappings each $i, j \in \omega$, $g_{i-1}|D'_i$ is a homeomorphism;
(e) $g_{i-1}|D'_i$ is a homeomorphism in a closed subset of $g_{i-1}(K')$;
(f) $B_{i-1} = g_{i-1}(K')$ is compact for $i > 0$;
(g) $g_{i-1|i}B_{i-1}$ is a homeomorphism for $i > 0$.

First, let us check properties (a)–(g) for $i = 0$. (a) holds trivially. The family
$\{U_n \subset K' : n \in \omega\}$, where $U_{00} = q(f^{-1}(0; 1/3))$ and $U_{0i} = q(f^{-1}(boaj -1/3; boaj +1/3))$
for $i \geq 1$ satisfies (b). (c) follows from (b) and the fact that $D_0' = \bigoplus\{D'_0, n : n \in \omega\}$ and each D'_0, n is compact. (d) holds trivially, (e) follows directly from (b)–(d).

Now let mappings $g_k, g_{k-1,k}$ be constructed for all $k \leq i - 1$ and satisfy properties
(a)–(e).

Lemma 1. Let a T_1 normal space M be an inductive limit of an increasing
sequence of its closed subsets M_n, where $n \in \omega$. Let $\{h_{n,n+1} : n \in \omega\}$ be a family of
quotient mappings such that $\text{Dom}(h_{0,1}) = M$, $\text{Dom}(h_{n,n+1,2}) = \text{Ran}(h_{n,n+1})$
and $h_{n+1} = h_{n,n+1} \circ \ldots \circ h_{0,1}$. Let \mathcal{M} be an equivalence relation on M such that
$xM y \Leftrightarrow h_k(x) = h_k(y)$ for some $n \in \omega$. Let also for $n \in \omega$ sets $B_n = h_n(M_n)$ be
normal and closed subsets of $h_n(M)$ and $h_{n,n+1}|B_n$ be a homeomorphism onto a
closed subset of B_{n+1}. Then the image H/\mathcal{M} of a natural quotient mapping h of M is a T_1
normal space.

Proof of Lemma 1: For any $x \in M$, $h^{-1}(h(x)) = \bigcup\{h_{n-1}(h_n(x)) : n \in \omega\}$. For
each $i \in \omega$, $h_{n+i}(h_{n+i}(x)) \cap M_n = h_{n-1}(h_n(x)) \cap M_n$, therefore $h^{-1}(h(x)) \cap M_n$
$h_{n-1}(h_n(x)) \cap M_n$. The latter set is closed in M_n, hence $h^{-1}(h(x))$ is closed in M
and M/\mathcal{M} is a T_1 space.

Let F, G be disjoint closed subsets of M such that $h^{-1}(h(F)) = F$, $h^{-1}(h(G)) =
G$. Let O_0 and U_0 be functionally disjoint in B_0 neighborhoods of $h_0(F_0)$ and
$h_0(G_0)$ respectively. The sets $V_0 = h_0^{-1}(O_0) \cap M_0$ and $W_0 = h^{-1}(U_0) \cap M_0$
satisfy the following conditions for $n = 0$:
(1) $h^{-1}(h_n(V_n)) \cap M_n = V_n$, $h^{-1}(h_n(W_n)) \cap M_n = W_n$;
(2) $F_n \subset V_n$ and $G_n \subset W_n$ where $F_n = F \cap M_n$ and $G_n = G \cap M_n$;
(3) $\overline{h_n(V_n)}^{B_n} \cap \overline{h_n(W_n)}^{B_n} = \emptyset$;
(4) $V_n \supset V_{n-1}$ and $W_n \supset W_{n-1}$ for all $n \geq 1$.

Let V_n, W_n be constructed for all $n < k$, $k \geq 1$, and satisfy (1)–(4). By (3)
$h_{k-1,k}(\overline{h_{k-1}(V_{k-1})}^{B_{k-1}}) \cap h_{k-1,k}(\overline{h_{k-1}(W_{k-1})}^{B_{k-1}}) = \emptyset$. From the definition
of F and G and by (1), (2) $h_{k-1,k}(\overline{h_{k-1}(V_{k-1})}^{B_{k-1}}) \cap h_k(G) = \emptyset$ and $h_k(F) \cap
h_{k-1,k}(\overline{h_{k-1}(W_{k-1})}^{B_{k-1}}) = \emptyset$, then $h_k(V_{k-1} \cup F_k) \cup \overline{h_k(G_k)B_k} = \emptyset$,
and these sets have functionally disjoint in B_k neighborhoods O_k and U_k respectivley. Let $V_k = h_k^{-1}(O_k) \cap M_k$, $W_k = h_k^{-1}(U_k) \cap M_k$. V_k and W_k satisfy (1)–(4)
for $n = k$, therefore the construction of V_n, W_n can be carried out for all $n \in \omega$.
Now let $V = \cup\{V_k : k \in \omega\}$ and $W = \cup\{W_k : k \in \omega\}$. V and W are open in M since M is an inductive limit of M_n. By (1) $h^{-1}(h(V)) = V$ and $h^{-1}(h(W)) = W$; by (2) $F \subset V$ and $G \subset W$. Lemma 1 is proved.

Let $M = g_{i-1}(\mathcal{K}')$ and $M_n = g_{i-1}(G_n)$. Let h_n be a natural quotient mapping for the decomposition \mathcal{M}_n of the space $g_{i-1}(\mathcal{K}')$, where for $x \in M_n$, $x\mathcal{M}_n y \Leftrightarrow x E'_i y$ and for $x \notin M_n$, $x\mathcal{M}_n y \Rightarrow x = y$. Since any element of \mathcal{M}_n is a subset of some element of \mathcal{M}_{n+1}, the composition mapping $h_{n-1,n} = h_n \circ h_{n-1}^{-1}$ also is a quotient mapping. $M = g_{i-1}(\mathcal{K}')$ is an inductive limit of compacta M_n since \mathcal{K}' is an inductive limit of compacta G'_n and g_{i-1} is a quotient mapping.

Since $\mathcal{M}_n|_M \equiv \mathcal{M}_{n+1}|_M$, $h_{n,n+1}|_{h_n(M_n)}$ is a homeomorphism for any $n \in \omega$. All conditions of the lemma are satisfied, therefore h maps M onto a normal space $\mathcal{M}/M_n \equiv E'_i/M_n$, $n \in \omega$. $\cup\{M_n : n \in \omega\} = M = g_{i-1}(\mathcal{K}')$ and $M = \text{Dom}(\mathcal{M})$, $g_{i-1}(\mathcal{K}') = \text{Dom}(E'_i)$, thus $\mathcal{M} \equiv E'_i$ and the quotient mappings H and g_i (which are generated by \mathcal{M} and E'_i) coincide. Therefore $g_i(\mathcal{K}')$ is a T_1 normal space. Let us prove properties (b)–(e). For $U_{i0} = g_i(q(\tilde{f}^{-1}[0; i + \frac{1}{2}]))$ and $U_{ij} = g_i(q(\tilde{f}^{-1}(b_{aij} - \frac{1}{3}; b_{aij} + \frac{1}{3})))$ for $j \geq 1$, the family $\{U_{in} : n \in \omega\}$ satisfies (b). Equality $D_{i+1} = \cup\{D_{i+1,n} : n \in \omega\}$ and (c) follow from (b) and the fact that each subset $D_{i+1,n}$ is compact, and therefore $g_i(D_{i+1,n})$ is closed in $g_i(\mathcal{K}')$. Each $D_{j,n}$ is compact and $E'_i|D_{j,n}$ is a trivial decomposition into singletons, therefore (d) is true. (e) follows from (b)–(d).

Therefore, $g_{i-1,i}$ and g_i can be constructed for all $i \in \omega$ and satisfy (a)–(e). Let us prove (f) and (g) for $i \geq 1$. $B_i = g_i(\mathcal{K}) = g_i(G'_i)$, hence B_i is compact. Map $g_{i,i+1}$ is defined by the decomposition E'_{i+1}, $E'_{i+1}|B_i$, which is a decomposition into singletons, therefore $g_{i,i+1}|B_i$ is a homeomorphism.

Now let $M = \mathcal{K}'$, $h_n = g_n$, $h_{n,n+1} = g_{n,n+1}$ and $M_n = D_n$ for $n \in \omega$. Conditions of the lemma follows from (f), (g). The resulting mapping g is defined by the decomposition E' of \mathcal{K}: $x E' y \Leftrightarrow g_i(x) = g_i(y)$ for some $i \in \omega$, and g maps \mathcal{K}' onto a T_1 regular σ-compact space.

The conclusion of Theorem 1 follows from the following properties:

(h) $B_i \subset g_i(\mathcal{X}')$;

(k) $g_i|_{\mathcal{X}'}$ is a condensation.

Assume the contrary to (h). Then there is the minimal $i_0 \in \omega$ such that for some $x \in C_{i_0} \setminus \mathcal{X}'$, $g_{i_0}(q(x)) \neq g_i(x')$. If $i_0 = a_{i_0,k_0}$ and $x \in \tilde{H}_{j_0,k_0}$, then $\tilde{\psi}_{i_0,k_0}(x) \in C_{i_0}$, $j_0 < i_0$ and by the assumption $g_{i_0}(q(x)) \in g_{i_0}(q(C_{j_0} \setminus \mathcal{X}')) \subset g_{i_0}(x')$. That contradicts the minimality of i_0. If $x \notin \cup\{\tilde{H}_{j,k} : j < j_0, k \in \omega\}$, then $x \in C_{i_0,j_0}$ for some $j_0 \in \omega$. Since ψ_{i_0,j_0+1} maps \tilde{H}_{i_0,j_0} onto C_{i_0,j_0} and from the definition of E'_{i_0}, $g_{i_0}(q(x)) \subset g_{i_0}(q(H_{i_0,j_0+1})) \subset g_{i_0}(x')$ and (h) is proved.

Suppose it is proved that $g_i|_{\mathcal{X}'}$ is a condensation for all $i < k$, $k \in \omega$. Since $g_k = g_{k-1,k} \circ g_{k-1}$, it is sufficient to prove that $g_{k-1,k}|g_{k-1}(\mathcal{X}')$ is a condensation.
By (d) $g_k|D'_{kj}$ is a homeomorphism for any $i \in \omega$. It is sufficient to prove that for any $j_0, j_1 \in \omega$, $0 < j_0 < j_1$, and $x_0 \in D_{k,j_0} \cap \mathcal{X}$, $x_1 \in D_{k,j_1} \cap \mathcal{X}$ and $y \in D_{k_0} \cap \mathcal{X}$ the following inequalities hold: $g_k(q(x_0)) \neq g_k(q(x_1)) \neq g_k(q(y)) \neq g_k(q(x_0))$.

Let $\psi_{k,j_0}(x_0) \in C_{k,j_0-1}$, $\psi_{k,j_1}(x_1) \in C_{k,j_1-1}$, therefore $g_k(q(x_0)) \neq g_k(q(x_1))$ since $C_{k,j_0-1} \cap C_{k,j_1-1} = \emptyset$. From the definition of ψ_{ij}, $\tilde{\psi}_{k,j_0}$ maps $D'_{k,j_0} \cap \mathcal{X}$ in $C_{k,j_0-1} \in D'_{k_0} \setminus \mathcal{X}$ and $\tilde{\psi}_{k,j_1}$ maps $D'_{k,j_1} \cap \mathcal{X}$ in $C_{k,j_1-1} \in D'_{k_1} \setminus \mathcal{X}$. Hence other inequalities also hold.

A cardinal μ is called τ-measurable, if there is a τ-centered ultrafilter on μ, so the Ulam-measurable cardinals are exactly those which are ω-centered. The same method allows us to prove the following

Theorem 2. Let μ_0 be a non τ-measurable cardinal and for every $k \in \omega$, $\mu_{k+1} = \exp(\mu_k)$ and $\mu = \sup\{\mu_k : k \in \omega\}$. Let X_0 be a Tychonoff non-pseudocompact space and $\{X_\alpha : 1 \leq \alpha \leq \mu\}$ be a family of spaces such that $\text{ext}(X_\alpha) \geq \tau$ for $1 \leq \alpha < \tau$ and $|X_\alpha| < \mu$ for $0 \leq \alpha < \mu$. Then $\prod\{X_\alpha : \alpha < \mu\}$ can be condensed onto a regular σ-compact space.

2. A case of τ-compact spaces

For any cardinal τ, let $\tilde{\tau}$ be the set of all isolated ordinals less then τ. A space X is called τ-compact if each of its subsets of cardinality τ has a complete accumulation point in X. For any space X, a compactification cX, and cardinals τ_1, τ_2 let $M(X, cX, \tau_1, \tau_2) = ((\tau_1 + 1) \times (\tau_2 + 1) \times cX) \setminus (\tilde{\tau}_1 \times \tilde{\tau}_2 \times (cX \setminus X))$. This construction is related to the space $((\tau + 1) \times \beta X) \setminus (\tau \times (\beta X \setminus X))$ for certain X and τ which was described by R. Buzyakova in [4].

We have shown in Section 1 that for many spaces X there are certain powers μ, which depend on X, such that X^μ can be condensed onto a σ-compact space. The original space can be as bad as we wish and fail all the properties of σ-compact spaces. Thus, in that situation condensations can improve topological properties of powers. In this section we prove somewhat reverse result by producing examples of good spaces M whose (small) powers are so bad that they cannot even be improved by condensations. Let μ be an ordinal, and let τ_i, $i = 1, 2, 3, 4$, be cardinals which depend on τ and on the size of X as it is stated in Theorem 3. We denote $M = M(X, cX, \tau_1, \tau_2) \bigoplus M(X, cX, \tau_3, \tau_4)$ and $M_\nu \approx M$ for $\nu < \mu$. M consists of a compact “skeleton” $K = \left\{\left((\tau_1 + 1) \times (\tau_2 + 1)\right) \setminus (\tilde{\tau}_1 \times \tilde{\tau}_2)\right\} \bigoplus \left\{((\tau_3 + 1) \times (\tau_4 + 1)) \setminus (\tilde{\tau}_3 \times \tilde{\tau}_4)\right\} \times cX$ and of many clopen copies of X. If $f : M^\mu \to Z$ is a condensation, then $f|_{K^\mu}$ is a homeomorphism since K^μ is compact. K^μ is only a part of M^μ, but the copies of X are inserted in M in such a way that this restriction influences the whole map F and we can ultimately find clopen copies X_ν of X in M_ν for all $\nu < \mu$ such that f restricted to $\prod\{X_\nu : \nu < \mu\}$ is a homeomorphism onto a closed subset of Z. Now suppose that X^μ is not normal (paracompact, etc.). Then Z is not normal (paracompact, etc.) either. This means that M^μ cannot be condensed onto a normal (paracompact, etc.) space.
The fact that M is good itself when X is so follows from Lemma 2. Hence M is the desired example.

Lemma 2. Let X be a Tychonoff space and let cX be a compactification of X. Let $M = M(X, cX, \tau_1, \tau_2) \bigoplus M(X, cX, \tau_3, \tau_4)$ for some cardinals τ_i, $i = 1, 2, 3, 4$. Then M is normal (τ-paracompact, realcompact) iff X is so and M^{μ} is pseudocompact iff X^{μ} is so.

Let a property P be invariant of continuous mappings, of inverse perfect mappings and suppose P is inherited by clopen subsets. Then M^{μ} satisfies P iff so does X^{μ}. In particular, $l(M^{\mu}) = \tau$ (M^{μ} is τ-initially compact, σ-compact, τ is regular and M^{μ} is τ-compact, respectively) iff the same is true for X^{μ}.

Proof: $K = \{[((\tau_1+1) \times (\tau_2+1)) \setminus (\tilde{\tau}_1 \times \tilde{\tau}_2)] \bigoplus\{((\tau_3+1) \times (\tau_4+1)) \setminus (\tilde{\tau}_3 \times \tilde{\tau}_4)\} \times cX$ is compact and any neighborhood of K in M contains a neighborhood U such that $M \setminus U$ is a union of finitely many clopen copies of X. This proves the first part of the lemma.

$K_1 = ((\tau_1+1) \times (\tau_2+1)) \bigoplus((\tau_3+1) \times (\tau_4+1))$ is compact and $K_1 \times X$ is dense in M. Therefore $(K_1)^{\mu} \times X^{\mu}$ is dense in M^{μ}. Some clopen subset of M^{μ} can be projected onto X. By these reasons M^{μ} is pseudocompact iff so is X^{μ}.

The space $M/(K \times cX)$ is obtained from M by identifying a closed subset $K \times cX$ to a single point (see [5]). $K \times cX$ is compact, so the corresponding quotient map $q : M \to M/(K \times cX)$ is perfect. Let p be a restriction of q to $K_1 \times X$, then $p(K_1 \times X) = q(M)$. Let p_α, q_α be the α-th “copies” of p, q, $\alpha < \mu$ and $p = \Delta(p_\alpha : \alpha < \mu)$, $q = \Delta(q_\alpha : \alpha < \mu)$, then $M^{\mu} = q^{-1}(p((K_1 \times X)^{\mu}))$. \square

Theorem 3. Let X^{μ} be τ-compact and let τ, τ_i be regular cardinals, $i = 1, 2, 3, 4$, such that $\tau_1 > \tau_2 > \tau_3 > \tau_4 > \max\{|cX|, \tau\}$. Then for $M = M(X, cX, \tau_1, \tau_2) \bigoplus M(X, cX, \tau_3, \tau_4)$, $Y = M^{\mu}$ and any condensation $f : Y \to Z$ there is a closed subset F of Y homeomorphic to X^{μ} such that $f|_F$ is a homeomorphism onto a closed subset of Z. Also, any continuous function on $f(F)$ that can be extended to a function on $(cX)^{\mu}$ (when $f(F)$ is naturallyembedded in $(cX)^{\mu}$) can be extended on Z. In particular, if X^{μ} is pseudocompact and $cX = \beta X$, then $f(F)$ is C-embedded in Z.

Proof: Assume that $cf(\mu) \neq \tau_1, \tau_2$. Let $Y = \prod\{Y_\alpha : \alpha < \mu\}$, where each Y_α is homeomorphic to M. We denote $\tilde{Y} = \beta Y$, $\tilde{Z} = \beta Z$; \tilde{f} is a continuous extension of f from \tilde{Y} to \tilde{Z}. For any $\alpha < \mu$, let $\pi_\alpha : Y \to Y_\alpha$ be a projection and let $\tilde{\pi}_\alpha$ be its extension from \tilde{Y} onto $\tilde{Y}_\alpha = \beta Y_\alpha$. For $y \in \tilde{Y}_\alpha$ and $i = 1, 2, 3$, $\phi_i(y)$ is a projection onto (τ_1+1), (τ_2+1) or cX respectively if $y \in M(X, cX, \tau_1, \tau_2)\tilde{Y}_\alpha$ or onto (τ_3+1), (τ_4+1) or cX respectively if $y \in M(X, cX, \tau_3, \tau_4)\tilde{Y}_\alpha$. For $\alpha < \mu$ and $i = 1, 2, 3$, we denote $\psi_{\alpha,i} = \phi_i \circ \tilde{\pi}_\alpha$ and $\psi_3 = \Delta\{\psi_{\alpha,3} : \alpha < \mu\}$. For any combination i, j of indexes 1, 2, 3, let $\phi_{ij} = \phi_i \phi_j$ and $\psi_{\alpha,ij} = \phi_{ij} \circ \tilde{\pi}_\alpha$. For $(\alpha, \beta) \in \tau_1 \times \tau_2$, let $Y_{\alpha\beta} = \{y \in \tilde{Y} : \text{if } \psi_{\gamma,3}(y) \in cX \setminus X \text{ for some } \gamma < \mu, \text{ then } \psi_{\gamma,12}(y) = (\alpha, \beta)\}$. If $\gamma < \mu$ then let $Y_{\alpha\beta}^\gamma = \{y \in Y_{\alpha\beta} : \psi_{\gamma,3}(y) \in cX \setminus X\}$.
Now let $\gamma < \mu$ be fixed. For any $\beta' \in \tilde{\tau}_2$, let $A_{\beta'} = \{y \in Y_{\alpha\beta'}^\gamma : \alpha \in \tilde{\tau}_1$ and there is $y' \in Y_{\alpha\beta'}^\gamma \cup Y$ such that $\psi_{\gamma,3}(y) \neq \psi_{\gamma,3}(y')$ and $\bar{f}(y) = \bar{f}(y')\}$. Let $\tau' = \max\{\tau, |cX|\}^+$, we claim that $|\{\psi_{\gamma,1}(A_{\beta'})\}| < \tau'$. For, assume the contrary. Then there is a monotonically increasing mapping ϕ from τ' in $\tilde{\tau}_1$, a point $c \in cX \setminus X$, sets $A = \{y : \delta < \tau'\}$ and $A' = \{y' : \delta < \tau'\}$ and a neighborhood U of c in $\tau_2 \times cX$ such that for any $\delta < \tau'$, $y, y' \in Y_{\phi(\delta)\beta'}^\gamma \cup Y$, $\psi_{\gamma,23}(y) = c$, $\psi_{\gamma,23}(y') \notin U$, and $\bar{f}(y) = \bar{f}(y')$ (it’s all possible because $\psi_{\gamma,23}(A_{\beta'}) \subset \{\beta'\} \times cX$ and $\{\beta'\} \times cX$ is open in $\tau_2 \times cX$, so $\psi_{\gamma,23}(A_{\beta'})$ has a base of cardinality $\leq cX < \tau'$ in $\tau_2 \times cX$). For any $y \in A$, let \bar{y}_δ be such a point from Y that for any $\nu < \mu$, $\pi_\nu(\bar{y}_\delta) = \bar{\pi}_\nu(y)$ if $\bar{\pi}_\nu(y) \in cX$, otherwise let $\psi_{\nu,23}(\bar{y}_\delta) = \psi_{\nu,23}(\bar{y}_\delta)$ and $\psi_{\nu,1}(\bar{y}_\delta) = \psi_{\nu,1}(y) + \omega$. Let $\tilde{A} = \{\bar{y}_\delta : \delta < \tau'\}$. In the same way the set $\tilde{A}' = \{\bar{y}_\delta' : \delta < \tau'\}$ is defined. The set $\{(\bar{y}_\delta, \bar{y}_\delta') \in Y \times Y : \delta < \tau'\}$ has a complete accumulation point (a, a') in $Y \times Y$. Since 23 and $Y \times Y$ is a homeomorphism onto a point $\tilde{\tau}_2$.

In the same way, for any $\gamma < \mu$ and $\alpha' < \tau_1$ there is an ordinal $\beta_{\alpha'}^\gamma < \tau_2$ such that $\psi_{\gamma,2}(A_{\alpha'}) \subset \beta_{\alpha'}^\gamma$, where $A_{\alpha'} = \{y \in Y_{\alpha'\beta}^\gamma : \beta \in \tilde{\tau}_2$ and there is $y' \in Y_{\alpha'\beta}^\gamma \cup Y$ such that $\psi_{\gamma,3}(y) \neq \psi_{\gamma,3}(y')$ and $\bar{f}(y) = \bar{f}(y')\}$. Since $cf(\mu) \neq \tau_1$, there is $\tilde{\alpha} < \tau_1$ and $\Gamma_1 \subset \mu$ such that $|\Gamma_1| = \mu$ and for any $\gamma \in \Gamma_1$, $\nu_\gamma \leq \tilde{\alpha}$. Since also $cf(\mu) \neq \tau_2$, there is $\tilde{\beta} < \tau_2$ and $\Gamma_2 \subset \Gamma_1$ such that $|\Gamma_2| = \mu$ and for any $\gamma \in \Gamma_2$, $\beta_{\alpha+1}^\gamma \leq \tilde{\beta}$. Now let $y \in Y$; for any $\gamma \in \Gamma_2$ we define $F_{\gamma} = (\tilde{\alpha} + 1) \times (\tilde{\beta} + 1) \times X$ and for any $\gamma \in \mu \setminus \Gamma_2, F_{\gamma} = \pi_\gamma(y) \Gamma_$. The set $F = \prod\{F_{\gamma} : \gamma \in \mu\}$ is homeomorphic to X^μ and $f|F$ is a homeomorphism onto a closed subset $f(F)$ of Z. Let g be a continuous function on $(cX)^\mu$ and let h be a map from \tilde{F}^Y onto $(cX)^\mu$ such that $h(y) = \{\psi_{\gamma,3}(y) : \gamma \in \Gamma_2\}, y \in \tilde{F}^Y$. Then $h \circ f^{-1}|f(F)$ is a natural embedding of $f(F)$ in $X^\mu \subset (cX)^\mu$ by the properties of $f|F$. Since $\bar{f}(h^{-1}(x_1)) \cap \bar{f}(h^{-1}(x_2)) = \emptyset$ for $x_1 \neq x_2, x_1, x_2 \in (cX)^\mu$ by the choice of F, $h \circ f^{-1}$ is a continuous function from $\bar{f}(F)^\tilde{Z}$ onto $(cX)^\mu$. Therefore g can be lifted to a continuous function on $\bar{f}(F)^\tilde{Z}$ and extended to a function on \tilde{Z}.

If $cf(\mu) = \tau_1$ or $cf(\mu) = \tau_2$, all the preceding arguments remain valid if τ_1 and τ_2 are replaced everywhere with τ_3 and τ_4 respectively. \(\square\)

Corollary 1. a. For any Tychonoff space X and any cardinal ν there is a larger space M which preserves many properties of X listed in Lemma 2 and
such that for any $\mu \leq \nu$ and a condensation $f : M^\mu \to Z$, Z contains a closed subset homeomorphic to X^μ; if X^μ is pseudocompact, then this subset is also C-embedded in Z. In particular, M^μ cannot be condensed onto a normal (Lindelöf, σ-compact, etc.) space if X^μ is not normal (Lindelöf, σ-compact, etc.).

b. If X is countably compact in all powers or if there is a $|X|$-measurable cardinal, then M satisfies the above properties for all ν.

Proof:

a. Let $\tau = |\beta X^\nu|^+$ and $\tau_1 = \tau^+$, $\tau_{i+1} = \tau_i^+$, $i = 1, 2, 3$. Clearly, X^μ is τ-compact for any $\mu \leq \nu$, so $M = M(X, \beta X, \tau_1, \tau_2) \oplus M(X, \beta X, \tau_3, \tau_4)$ is a required space.

b. If X is countably compact in all powers, let $\tau = |\beta X|^+$, $\tau_1 = \tau^+$, and for $i = 1, 2, 3$, $\tau_{i+1} = \tau_i^+$. Then $M = M(X, \beta X, \tau_1, \tau_2) \oplus M(X, \beta X, \tau_3, \tau_4)$ is as desired. If τ is the first $|X|$-measurable cardinal, then all powers of X are τ-compact, hence for $\tau_1 = \tau^+$, $\tau_{i+1} = \tau_i^+$, $i = 1, 2, 3$, $M = M(X, \beta X, \tau_1, \tau_2) \oplus M(X, \beta X, \tau_3, \tau_4)$ is as required. □

Corollary 2. For any infinite compactum K there is a normal space X such that $X \times K$ cannot be condensed onto a normal space.

Proof: Let Y be a Dowker space and $\tau = max\{|\beta Y|, |K|\}^+$, $\tau_1 = \tau^+$, $\tau_{i+1} = \tau_i^+$, $i = 1, 2, 3$. The space $X = M(Y, \beta Y, \tau_1, \tau_2) \oplus M(Y, \beta Y, \tau_3, \tau_4)$ is normal by Lemma 2. $X \times K$ cannot be condensed onto a normal space by Theorem 3 since $X \times K = M(Y \times K, \beta Y \times K, \tau_1, \tau_2) \oplus M(Y \times K, \beta Y \times K, \tau_3, \tau_4)$. □

From Theorem 1 and Corollary 1 we derive the following

Corollary 3. The following are equivalent:

1. for any Tychonoff non-pseudocompact space X there is μ such that X^μ can be condensed onto a normal space;
2. for any Tychonoff non-pseudocompact space X there is μ such that X^μ can be condensed onto a regular σ-compact space;
3. there is no measurable cardinal.

Acknowledgments. The author is grateful to A.V. Arhangel’skii for attention to this paper.

References

Condensations of Cartesian products

Ohio University, Athens, OH 45701, USA

(Received October 6, 1997, revised June 1, 1998)