A remark on localized weak precompactness in Banach spaces

MINORU MATSUDA

Abstract. We give a characterization of K-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.

Keywords: K-weakly precompact set, uniform Gateaux differentiability

Classification: 46B07, 46B22, 49J50

We begin with the requisite definition. Throughout this paper X denotes a real Banach space with topological dual X^*. If $g : X \to \mathbb{R}$ is a continuous convex function, for $x, y \in X$, we define $Dg(x, y)$ by

$$\lim_{t \to 0} \frac{g(x + ty) - g(x)}{t}$$

provided that this limit exists, and we also define the subdifferential of g at $x \in X$ to be the set $\partial g(x)$ of all elements x^* of X^* satisfying that $(u, x^*) \leq g(x + u) - g(x)$ for any $u \in X$. Then $\partial g(x)$ is a non-empty weak*-compact convex subset of X^* for every $x \in X$. The triple (I, Λ, λ) refers to the Lebesgue measure space on $I (= [0, 1])$, Λ^+ to the sets in Λ with positive λ-measure. We always understand that I is endowed with Λ and λ. We denote the set $\{\chi_E/\lambda(E) : E \in \Lambda^+\}$ by $\Delta(I)$. A function $f : I \to X^*$ is said to be weak*-measurable if $(x, f(t))$ is λ-measurable for each $x \in X$. If $f : I \to X^*$ is a bounded weak*-measurable function, we obtain a bounded linear operator $T_f : X \to L_1(I, \Lambda, \lambda)$ given by $T_f(x) = x \circ f$ for every $x \in X$, where $(x \circ f)(t) = (x, f(t))$ for every $t \in I$, and the dual operator of T_f is denoted by $T_f^* : L_\infty(I, \Lambda, \lambda) \to X^*$.

According to Bator and Lewis [1], let us define the notion of localized weak precompactness in Banach spaces as follows.

Definition 1. Let A be a bounded subset of X and K a weak*-compact subset of X. Then we say that A is K-weakly precompact if every sequence $\{x_n\}_{n \geq 1}$ in A has a pointwise convergent subsequence $\{x_{n(k)}\}_{k \geq 1}$ on K.

Then, in [1], they have made a systematic study of K-weakly precompact sets A in Banach spaces and obtained various characterizations of such sets.

Succeedingly, in our paper [4], we also have obtained measure theoretic characterizations of K-weakly precompact sets A by the effective use of a K-valued
weak* -measurable function constructed in the case where \(A \) is non-\(K \)-weakly precompact. In this paper we wish to add a characterization of \(K \)-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions, which is our aim. This can be regarded as a slight generalization and refinement of Corollary 10 in [1]. And it should be noted that even here this \(K \)-valued function also becomes an effective means to an end. Before giving our characterization theorem, let us define some special continuous convex functions on \(X \) as follows.

Definition 2. Let \(H \) be a non-empty bounded subset of \(X^* \). Then the continuous convex function associated with \(H \), which is denoted by \(g_H \), is defined by
\[
g_H(x) = \sup \{(x, x^*) : x^* \in H\}
\]
for every \(x \in X \).

In what follows, all notations and terminology used and not defined are as in [1].

Let \(A \) be a bounded subset of \(X \), \(K \) a weak* -compact subset of \(X^* \), \(\{x_n\}_{n \geq 1} \) a sequence in \(A \) and \(Y \) the closed linear span of \(\{x_n : n \geq 1\} \) in \(X \). In the following, we always understand that \(Y \) is a such space. Let \(j : Y \to X \) be the inclusion mapping and \(j^* \) its dual mapping. For any non-empty subset \(H \) of \(K \), the continuous convex function \(g_H : Y \to \mathbb{R} \) satisfies \(\partial g_H(y) \subset \overline{\sigma}^{*} (j^*(K)) \) for each \(y \in Y \). Further let us note two preliminary facts for the proof of Theorem. One concerns separably related sets in the case where \(A \) is \(K \)-weakly precompact. Let \(\{x_n\}_{n \geq 1} \) be a sequence in \(A \) and suppose that there exists a subsequence \(\{x_{n(k)}\}_{k \geq 1} \) of \(\{x_n\}_{n \geq 1} \) such that \(\lim_{k \to \infty} (x_{n(k)}, x^*) \) exists for every \(x^* \in K \). Then this implies that \(\lim_{k \to \infty} (x_{n(k)}), y^* \) exists for every \(y^* \in \overline{\sigma}^{*} (j^*(K)) \). Hence, by considering the mapping \(L : \overline{\sigma}^{*} (j^*(K)) \to c \) (the Banach space of all convergent sequences of real numbers equipped with the supremum norm \(|| \cdot ||_{\infty} \) defined by \(L(y^*) = \{(x_{n(k)}, y^*)\}_{k \geq 1} \)), we easily know that \(\overline{\sigma}^{*} (j^*(K)) \) is separably related to \(\{x_{n(k)} : k \geq 1\} \), since \(c \) is separable. The other concerns the construction of a \(K \)-valued weak* -measurable function \(h \) and a sequence \(\{x_n\}_{n \geq 1} \) in \(A \) in the case where \(A \) is non-\(K \)-weakly precompact. Then, although the construction of this function \(h \) and the sequence \(\{x_n\}_{n \geq 1} \) in \(A \) is exactly the same as in \(\S \) 3 of [4], for the sake of completeness, we state its outline briefly in the following. Since \(A \) is not \(K \)-weakly precompact, by the celebrated argument of Rosenthal [5], we have a sequence \(\{x_n\}_{n \geq 1} \) in \(A \) and real numbers \(r \) and \(\delta \) with \(\delta > 0 \) such that putting \(A_n = \{x^* \in K : (x_n, x^*) \leq r\} \) and \(B_n = \{x^* \in K : (x_n, x^*) \geq r + \delta\} \), \((A_n, B_n)_{n \geq 1} \) is an independent sequence of pairs of weak* -closed subsets of \(K \) (that is, for every \(\{\varepsilon_j\}_{1 \leq j \leq k} \) with \(\varepsilon_j = 1 \) or \(-1\), \(\bigcap \{\varepsilon_j A_j : 1 \leq j \leq k\} \) is a non-empty set, where \(\varepsilon_j A_j = A_j \) if \(\varepsilon_j = 1 \) and \(\varepsilon_j A_j = B_j \) if \(\varepsilon_j = -1 \)). Putting \(\Gamma = \bigcap_{n \geq 1} (A_n \cup B_n) \), \(\Gamma \) is a non-empty weak* -compact subset of \(K \), since \((A_n, B_n)_{n \geq 1} \) is independent. Define \(\varphi : \Gamma \to \mathcal{P}(N) \) (Cantor space, with its usual compact metric topology) by \(\varphi(x^*) = \{p : (x_p, x^*) \leq r\} (= \{p : A_p \ni x^*\}) \in \mathcal{P}(N) \). Then \(\varphi \) is a continuous surjection from \(\Gamma \) to \(\mathcal{P}(N) \) (here, \(\Gamma \) is endowed with the weak* -topology \(\sigma(X^*, X) \)) and so we have a Radon probability measure \(\gamma \) on \(\Gamma \) such that \(\varphi(\gamma) = \nu \) (the normalized Haar measure if we identify \(\mathcal{P}(N) \) with \(\{0, 1\}^N \)).
and \{f \circ \varphi : f \in L_1(\mathcal{P}(N), \Sigma_\nu, \nu)\} = L_1(\Gamma, \Sigma_\gamma, \gamma) where \Sigma_\nu (resp. \Sigma_\gamma) is the family of all \nu (resp. \gamma)-measurable subsets of \mathcal{P}(N) (resp. \Gamma). Further, consider a function \tau : \mathcal{P}(N) \rightarrow I defined by \tau(D) = \Sigma\{1/2^m : m \in D\} for every D \in \mathcal{P}(N). Then \tau is a continuous surjection such that \tau(\nu) = \lambda and \{u \circ \tau : u \in L_1(I, \Lambda, \lambda)\} = L_1(\mathcal{P}(N), \Sigma_\nu, \nu). Then, making use of the lifting theory, we have a weak*-measurable function \(h: I \rightarrow \Gamma (\subset K)\) such that

\[
\rho(x \circ h)(t) = (x, h(t)) \quad \text{for every } x \in X \text{ and every } t \in I,
\]

\[
\int_E (x, h(t)) \, d\lambda(t) = \int_{\varphi^{-1}(\tau^{-1}(E))} (x, x^*) \, d\gamma(x^*)
\]

for every \(E \in \Lambda\) and every \(x \in X\). Here \(\rho\) denotes a lifting on \(L_\infty(I, \Lambda, \lambda)\).

Now we are ready to state our characterization theorem (a localized version of Theorem 8 in [1]). Its main part is that (3) implies (1), whose proof is significant in the point that the characters of the \(K\)-valued function \(h\) and the sequence \(\{x_n\}_{n \geq 1}\) in \(A\) obtained above are used concretely and effectively. And there, we can get a result that for every \(y \in Y\) and every subsequence \(\{x_{n(k)}\}_{k \geq 1}\) of \(\{x_n\}_{n \geq 1}\), \(Dg_H(y, x_{n(k)})\) does not exist uniformly in \(k\), where \(H = h(I) (\subset K)\).

Theorem. Let \(A\) be a bounded subset of \(X\) and \(K\) a weak*-compact (not necessarily convex) subset of \(X^*\). Then the following statements about \(A\) and \(K\) are equivalent.

1. The set \(A\) is \(K\)-weakly precompact.
2. If \(\{x_n\}_{n \geq 1}\) is a sequence in \(A\) and \(g: Y \rightarrow \mathbb{R}\) is a continuous convex function such that \(\partial g(y) \subset \overline{co}(j^*(K))\) for every \(y \in Y\), then there exists a dense \(G_\delta\)-subset \(G\) of \(Y\) and a subsequence \(\{x_{n(k)}\}_{k \geq 1}\) of \(\{x_n\}_{n \geq 1}\) such that \(Dg(y, x_{n(k)})\) exists uniformly in \(k\) for each \(y \in G\).
3. If \(\{x_n\}_{n \geq 1}\) is a sequence in \(A\) and \(H\) is a non-empty subset of \(K\), then there exists an element \(y\) of \(Y\) and a subsequence \(\{x_{n(k)}\}_{k \geq 1}\) of \(\{x_n\}_{n \geq 1}\) such that \(Dg_H(y, x_{n(k)})\) exists uniformly in \(k\).

Proof: (1) \(\Rightarrow\) (2). The proof is analogous to that of the corresponding part of Theorem 8 in [1]. Suppose that (1) holds. Take any sequence \(\{x_n\}_{n \geq 1}\) in \(A\) and any continuous convex function \(g: Y \rightarrow \mathbb{R}\) such that \(\partial g(y) \subset \overline{co}(j^*(K))\) for every \(y \in Y\). As \(A\) is \(K\)-weakly precompact, we have a subsequence \(\{x_{n(k)}\}_{k \geq 1}\) of \(\{x_n\}_{n \geq 1}\) such that \(\lim_{k \to \infty} (x_{n(k)}, x^*)\) exists for every \(x^* \in K\). Therefore, by the first preliminary fact preceding Theorem, \(\overline{co}(j^*(K))\) is separably related to \(B(= \{x_{n(k)} : k \geq 1\})\). So it is separably related to \(aco(B)\) (the absolutely convex hull of \(B\)). Since \(\partial g(y) \subset \overline{co}(j^*(K))\) for every \(y \in Y\), by the same argument as in Theorem 3.14 and Proposition 3.15 of [2], we have a dense \(G_\delta\)-subset \(G\) of \(Y\) such that \(g\) is \(aco(B)\)-differentiable (cf. [2]) at every \(y \in G\), whence (2) holds.

(2) \(\Rightarrow\) (3). This follows immediately from the fact that \(\partial g_H(y) \subset \overline{co}(j^*(K))\) for every non-empty subset \(H\) of \(K\) and every \(y \in Y\).
(3) ⇒ (1). The proof of this part is crucial. Suppose that (1) fails. By the second preliminary fact preceding Theorem, we have a function \(h : I \to K \) and a sequence \(\{ x_n \}_{n \geq 1} \) in \(A \) as stated above. Take \(H = h(I) \), and let \(\{ U(n, k) : n = 0, 1, \ldots ; k = 0, \ldots , 2^n - 1 \} \) be a system of open intervals in \(I \) given by \(U(n, k) = (k/2^n, (k + 1)/2^n) \) if \(n \geq 0, 0 \leq k \leq 2^n - 1 \). Then we get that
\[\varphi^{-1}(\tau^{-1}(U(n, 2k))) \subset B_n \text{ and } \varphi^{-1}(\tau^{-1}(U(n, 2k + 1))) \subset A_n \] for \(n = 1, 2, \ldots \) and \(k = 0, \ldots , 2^{n-1} - 1 \). Further we note a following elementary fact: Let \(E \in \Lambda^+ \) and \(\{ n(i) \}_{i \geq 1} \) be a strictly increasing sequence of natural numbers. Then there exists a natural number \(i \) and a non-negative number \(q \) with \(0 \leq 2q < 2^{n(i)} - 1 \) such that both \(E \cap U(n(i), 2q) \) and \(E \cap U(n(i), 2q + 1) \) are in \(\Lambda^+ \), which can be easily shown by an argument used in Lemma 2 of [3].

Now, let us show that for every subsequence \(\{ x_{n(k)} \}_{k \geq 1} \) of \(\{ x_n \}_{n \geq 1} \) and every \(y \in Y, Dg_H(y, x_{n(k)}) \) does not exist uniformly in \(k \). To this end, take any point \(y \) in \(Y \) and any subsequence \(\{ x_{n(k)} \}_{k \geq 1} \) of \(\{ x_n \}_{n \geq 1} \), and set \(y_k = x_{n(k)} \) for every \(k \). Consider a family of weak*-open slices of \(\overline{co^*} (j^*(T^*_h(\Delta(I)))) \) (= \(M \)) : \(\{ S(y, \delta/3i, M) : i \geq 1 \} \). Then we have that for every \(i \)
\[
S(y, \delta/3i, M) = \left\{ y^* \in M : (y, y^*) > \sup_{z^* \in M} (y, z^*) - \delta/3i \right\} = \left\{ y^* \in M : (y, y^*) > \text{ess-sup}_{t \in I} (j(y), h(t)) - \delta/3i \right\} = \left\{ y^* \in M : (y, y^*) > g_H(y) - \delta/3i \right\},
\]
since \(g_H(y) = \sup_{t \in I} (j(y), h(t)) = \text{ess-sup}_{t \in I} (j(y), h(t)) \) by virtue of (\(\alpha \)) above. So, letting \(E_i = \{ t \in I : (j(y), h(t)) > g_H(y) - \delta/3i \} \), we easily get that \(E_i \in \Lambda^+ \) and \(j^*(h(E_i)) \subset S(y, \delta/3i, M) \) for every \(i \). Hence, by the elementary fact stated above, there exists a natural number \(k(i) \) and a non-negative number \(q(i) \) with \(0 \leq 2q(i) < 2^{n(k(i))} - 1 \) such that both \(E_i \cap U(n(k(i)), 2q(i)) \) and \(E_i \cap U(n(k(i)), 2q(i) + 1) \) are in \(\Lambda^+ \). For every \(i \), let \(F_i = E_i \cap U(n(k(i)), 2q(i)) \) and \(G_i = E_i \cap U(n(k(i)), 2q(i) + 1) \), and let \(u^*_i = j^*(T^*_h(\chi_{F_i}/\lambda(F_i))) \) and \(v^*_i = j^*(T^*_h(\chi_{G_i}/\lambda(G_i))) \). Then we have that for every \(i \)

(a) \((y, u^*_i) > g_H(y) - \delta/3i \) and \((y, v^*_i) > g_H(y) - \delta/3i \),

(b) \((y_{k(i)}, u^*_i - v^*_i) \geq \delta \),

(c) \(g_H(y + y_{k(i)}/i, u^*_i) \) and \(g_H(y - y_{k(i)}/i, u^*_i) \) are uniformly larger than \(g_H(y - y_{k(i)}/i, u^*_i) \).

Indeed, we have that
\[
(y, u^*_i) = \left(j(y), T^*_h(\chi_{F_i}/\lambda(F_i)) \right) = \left\{ \int_{F_i} (j(y), h(t)) d\lambda(t) \right\}/\lambda(F_i) > g_H(y) - \delta/3i,
\]
since \(j^*(h(F_i)) \subset S(y, \delta/3i, M) \). Similarly, \((y, v^*_i) > g_H(y) - \delta/3i \). Thus we have (a). And we can prove (b) as follows. In virtue of (\(\beta \)), we have that for
every i

\begin{align*}
(y_{k(i)}, u^*_i - v^*_i) \\
&= (j(y_{k(i)}), T^*_h(x_F/\lambda(F_i))) - (j(y_{k(i)}), T^*_h(x_{G_i}/\lambda(G_i))) \\
&= (j(x_{n(k(i))}), T^*_h(x_F/\lambda(F_i))) - (j(x_{n(k(i))}), T^*_h(x_{G_i}/\lambda(G_i))) \\
&= \left\{ \int_{F_i} (j(x_{n(k(i))}), h(t)) \, d\lambda(t) \right\} / \lambda(F_i) \\
&\quad - \left\{ \int_{G_i} (j(x_{n(k(i))}), h(t)) \, d\lambda(t) \right\} / \lambda(G_i) \\
&= \left\{ \int_{\varphi^{-1}(\tau^{-1}(F_i))} (j(x_{n(k(i))}), x^*) \, d\gamma(x^*) \right\} / \lambda(F_i) \\
&\quad - \left\{ \int_{\varphi^{-1}(\tau^{-1}(G_i))} (j(x_{n(k(i))}), x^*) \, d\gamma(x^*) \right\} / \lambda(G_i) \\
&\ge (r + \delta) - r = \delta,
\end{align*}

since $\varphi^{-1}(\tau^{-1}(F_i)) (\subset \varphi^{-1}(\tau^{-1}(U(n(k(i)), 2q(i)))) \subset B_{n(k(i))}$, $\varphi^{-1}(\tau^{-1}(G_i)) (\subset \varphi^{-1}(\tau^{-1}(U(n(k(i)), 2q(i) + 1)))) \subset A_{n(k(i))}$ and $\tau(\varphi(\gamma)) = \lambda$. As to (c), we have that for every i

$$g_H(y + y_{k(i)}/i) = \sup_{t \in I} (j(y + y_{k(i)}/i), h(t))$$

$$\ge \left\{ \int_{F_i} (j(y + y_{k(i)}/i), h(t)) \, d\lambda(t) \right\} / \lambda(F_i) = (y + y_{k(i)}/i, u^*_i).$$

Similarly, $g_H(y - y_{k(i)}/i) \ge (y - y_{k(i)}/i, v^*_i)$. Then, making use of (a), (b) and (c), we have that for every i

$$g_H(y + y_{k(i)}/i) + g_H(y - y_{k(i)}/i) - 2 \cdot g_H(y)$$

$$\ge (y + y_{k(i)}/i, u^*_i) + (y - y_{k(i)}/i, v^*_i) - \{(y, u^*_i + v^*_i) + 2\delta/3i\}$$

$$= (y_{k(i)}, u^*_i - v^*_i)/i - 2\delta/3i \ge \delta/3i.$$

Consequently, we have that for every i

$$\left\{ g_H(y + y_{k(i)}/i) + g_H(y - y_{k(i)}/i) - 2 \cdot g_H(y) \right\} / (1/i) > \delta/3,$$

which implies that $D g_H(y, x_{n(k)})$ does not exist uniformly in k. Thus the proof is complete. \hfill \Box

Acknowledgment. The author is grateful to the referee for suggestions in revising the paper.
References

Department of Mathematics, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422–8529, Japan

E-mail: smmmatu@ipcs.shizuoka.ac.jp

(Received January 21, 1998, revised May 19, 1998)