Differentially trivial left Noetherian rings

O.D. Artemovych

Abstract. We characterize left Noetherian rings which have only trivial derivations.

Keywords: differentially trivial ring, Noetherian ring

Classification: 16A72, 16A12

0. Let R be an associative ring with an identity element. A mapping $D : R \rightarrow R$ is called a derivation of R if

$$D(x + y) = D(x) + D(y)$$

and

$$D(xy) = D(x)y + xD(y)$$

for all elements x and y in R. A ring having no non-zero derivations will be called here differentially trivial ([1]). Every differentially trivial ring is commutative.

Note that the class of differentially trivial rings is contained in the class of ideally differential rings, i.e. rings R in which every ideal is invariant with respect to all derivations of R. The ideally differential rings were studied in [1–3].

In this paper we characterize differentially trivial Noetherian rings.

For convenience of the reader we recall some notation and terminology.

R^+ will always denote the additive group of R, $\mathcal{J}(R)$ the Jacobson radical of R and $\mathcal{F}(R)$ the periodic part of R^+, $Q(R)$ the field of quotients of a commutative domain R, $\text{char}(R)$ the characteristic of R, $\text{Nil}(R)$ the prime radical of R, $\text{Ann}(x)$ the annihilator of x in R, and $D_R(N) = \{c \in R \mid c + N \text{ is a regular element of } R/N\}$.

Throughout the paper p is a prime and \mathbb{Z}_{p^t} is the ring of integers modulo a prime power p^t.

Let us recall that a ring R is called local if the factor ring $R/\mathcal{J}(R)$ is a skew field.

We will also use some other terminology from [4].

1. Let R be a commutative Noetherian ring and $\text{Ass}(R)$ be the set of all prime ideals M of R for which there is a non-zero element x such that

$$M = \text{Ann}(x).$$
By Corollary 2 of [5, Chapter II, § 2, n°2]
\[\text{Ass}(R) \leq \text{Supp}(R) \]
(see Definition 5 of [5, Chapter IV, § 1, n°3]) and therefore by Corollary 1 of [5, Chapter IV, § 1, n°3] every minimal prime ideal of a commutative Noetherian ring \(R \) with zero-divisors is an annihilator. The subring of \(R \) generated by the identity element of \(R \) is called the prime subring of \(R \). If the field of quotients \(Q(R) \) of \(R \) is algebraic over its prime subfield we say that \(R \) is algebraic over its prime subring.

Proposition 1 (see [6]). A (commutative) domain \(R \) is differentially trivial if and only if at least one of the following two cases takes place:

1. \(\text{char}(R) = 0 \) and \(R \) is algebraic over its prime subring;
2. \(\text{char}(R) = q > 0 \) and \(R = \{ a^q \mid a \in R \} \).

Lemma 2. Let \(Z \) be a prime subring of a commutative domain \(R \). If \(R \) is algebraic over \(Z \) then every non-zero prime ideal of \(R \) is maximal.

Proof: Put \(q = \text{char}(R) \). If \(q > 0 \) then \(Z \) is a finite field and, for every non-zero \(u \in R \), the transformation

\[\phi : x \longrightarrow xu, \ x \in S, \]

is an injective endomorphism of the vector space \(S_Z, S = Z[u] \). Since \(R \) is algebraic over \(Z \), the space \(S_Z \) is finite-dimensional, \(\phi \) is an automorphism and \(u \) is invertible in \(R \). We have proved that \(R \) is a field in this case, and so we may assume that \(q = 0 \) and \(Z = \mathbb{Z} \) (the ring of integers). Now, let \(P \) be a non-zero prime ideal of \(R \) and \(I \) an ideal of \(R \) such that \(P \subseteq I \) and \(P \neq I \neq R \). Since \(R \) is algebraic over \(Z \), we have

\[P \cap Z = pZ = I \cap Z \]

for some prime number \(p \) of \(Z \). Further, if \(u \in I \setminus P \) then there are \(n \geq 1 \) and \(a_0, \ldots, a_n \in Z \) such that

\[a_0 + a_1u + \ldots + a_nu^n = 0, \]

\(a_0 \neq 0 \neq a_n \) and the numbers \(a_i \) are relatively prime (\(i = 0, \ldots, n \)). Clearly,

\[a_0 \in I \cap Z = pZ, \]

\(p \) divides \(a_0 \) and

\[a_1u + \ldots + a_nu^n = u(a_1 + \ldots + a_nu^{n-1}) \in P. \]

Thus

\[a_1 + \ldots + a_nu^{n-1} \in P \subseteq I \]

and, again,

\[a_1 \in I \cap Z = pZ. \]

Proceeding similarly further, we show that \(p \) divides all numbers \(a_0, \ldots, a_n \), a contradiction. This means that \(P \) is a maximal ideal in \(R \), as desired. \(\square \)
Proposition 3. Let R be a differentially trivial Noetherian domain of characteristic q.

(i) If $q = 0$ then every non-zero prime ideal of R is maximal.
(ii) If $q > 0$ then R is a field.

Proof: (i). Just combine Proposition 1(1) and Lemma 2.
(ii). Let P be a prime ideal of R. From Proposition 1(2) it follows that $P^q = P$. On the other hand,
\[\bigcap_{n=1}^{\infty} P^n = \{0\} \]
by the Krull Theorem (see [7, Chapter IV, §7, Theorem 12]). Thus $P = \{0\}$ and we conclude that R is a field. The proposition is proved. \qed

Remark 4. Let R be a differentially trivial Noetherian domain of characteristic 0. With respect to Proposition 1(1), we may assume that
\[\mathbb{Z} \subseteq R \subseteq Q(R) \subseteq A, \]
where A is the field of algebraic complex numbers. Now, it follows from Proposition 3(i) that the integral closure S of R in $Q(R)$ is a Dedekind domain.

Lemma 5. Let R be a differentially trivial Noetherian ring such that R is not a domain and let the additive group R^+ be torsion-free. Then R is a subdirect product of finitely many differentially trivial domains of characteristic 0.

Proof: If $\text{char}(R/P) = q > 0$ for some $P \in \text{Ass}(R)$ then there is an $x \in R$ such that $x \neq 0$, $P = (0 : x)$ and
\[qxR = \{0\}, \]
and, therefore, $x \in \mathcal{F}(R)$, a contradiction. Thus $\text{char}(R/P) = 0$ for every $P \in \text{Ass}(R)$.

If R/P is a field for every $P \in \text{Ass}(R)$ then R is an Artinian ring by the Akizuki Theorem (see [7, Chapter IV, §2, Theorem 2]). Applying Corollary 2.12 of [6] we obtain that R is the ring direct sum of finitely many differentially trivial fields of characteristic 0.

Suppose that the quotient ring R/P is not a field for some $P \in \text{Ass}(R)$. If $\text{Ass}(R) = \{P\}$ then $P^n = \{0\}$ for some integer $n \geq 1$. Now, let M be a nil ideal of R such that P/M is a minimal ideal of R/M. By Proposition 4.1.3(iii) of [4]
\[\mathcal{D}_{R/M}(0) = \mathcal{D}_{R/M}(P/M), \]
and, therefore,
\[\overline{a} \cdot P/M = P/M \]
for every $\overline{a} \in \mathcal{D}_{R/M}(P/M)$. Then, by Robson's Theorem (see [4, Theorem 4.1.9])
\[R/M = S \oplus A_1 \oplus \ldots \oplus A_m \]
is a ring direct sum of a semiprime ring S and finitely many local Artinian rings A_1, \ldots, A_m ($m \in \mathbb{N}$). Since the factor ring R/M is differentially trivial, each A_i is a field ($i = 1, \ldots, m$) by Lemma 2.2 of [6], a contradiction. Consequently, $\text{Ass}(R) = \{P_1, \ldots, P_n\}$ for an integer $n \geq 2$.

Assume that $N = \mathcal{N}il(R) \neq \{0\}$ and put $S = \bigcap_{i=1}^{n} (R \setminus P_i)$. If $P_i \leq P_j$, where i and j are distinct integers and $1 \leq i, j \leq n$, and $u \in P_j \setminus P_i$ then there exist $k \geq 1$ and a_0, \ldots, a_k in the prime subring of R such that $a_0 \notin P_i$ and

$$a_0 + a_1 u + \cdots + a_k u^k \in P_i$$

(use Proposition 1(1)). Then, however, $a_0 \notin P_j$, and this is a contradiction with $\text{char}(R/P_j) = 0$. Consequently, all prime ideals P_1, \ldots, P_n are pair-wise incomparable. By Proposition 10(ii) of [5, Chapter IV, §2, n°5] the total ring of quotients $A = S^{-1}R$ is Artinian, and by Theorem 4.1.4 of [4] the factor ring R/N is a Goldie ring.

Let M be a nil ideal of R such that N/M is a minimal ideal of R/M. By Proposition 4.1.3(iii) of [4] we have

$$\mathcal{D}_{R/M}(\overline{0}) = \mathcal{D}_{R/M}(N/M),$$

and, hence,

$$\overline{a} \cdot N/M = N/M$$

for every element $\overline{a} \in \mathcal{D}_{R/M}(\overline{0})$. Using Robson’s Theorem again, we conclude that the factor ring R/M is a ring direct sum of a semiprime ring X and finitely many local Artinian rings B_1, \ldots, B_l ($l \in \mathbb{N}$).

Thus to complete the proof we show that a differentially trivial local Artinian ring $A = B_i$ of characteristic 0 is a field. Let $\pi : A \rightarrow A/J(A)$ be a canonical epimorphism and $K = A/J(A)$. By P we denote the prime subring of A. Since $\text{char}(A) = 0$, P is a field. The family Γ of all subfields of A ordered by inclusion has a maximal element M by Zorn’s Lemma. If $\beta \in K$ is transcendental over $\pi(M)$ then every non-zero element of the polynomial ring $M[\beta]$ is not contained in $J(A)$. Therefore $M[\beta]$ is a field, a contradiction. Hence K is an algebraic extension of $\pi(M)$.

Let $\overline{f}(Y) = Y^n + \alpha_1 Y^{n-1} + \ldots + \alpha_n \in \pi(M)[Y]$ be a minimal polynomial of $\eta \in K$ over $\pi(M)$. By a_i we denote the inverse image of α_i in M ($i = 1, \ldots, n$). Since $\overline{f}(Y)$ have no multiple roots, by Hensel’s Lemma (see e.g. [8, Chapter 10, Exercises 9 and 10]) the polynomial

$$f(Y) = Y^n + a_1 Y^{n-1} + \ldots + a_n \in M[Y]$$

has a unique root z such that

$$\pi(z) = \eta.$$
This means that the ring $M[z]$ is isomorphic to the ring $\pi(M)[\eta]$ which is a field. The maximality of M yields that $\eta \in \pi(M)$. Hence $\pi(M) = K$ and

$$A = \mathcal{J}(A) + M.$$

Thus for every element a of A there are unique elements $j \in \mathcal{J}(A)$ and $m \in M$ such that

$$a = j + m.$$

(1)

It is well known that $\mathcal{J}(A)$ is a nilpotent ideal with index of nilpotency, say, $t \geq 2$. Furthermore, $\text{Ann}(\mathcal{J}(A)) \neq \mathcal{J}(A)^{t-2}$ if $t > 2$. The map $\sigma : A \rightarrow A$ given by

$$\sigma(a) = bj,$$

where b is a fixed element of $\mathcal{J}(A)^{t-2} \setminus (\text{Ann}\mathcal{J}(A))$ if $t > 2$, and

$$\sigma(a) = j$$

if $t = 2$ with j as in (1), determines a non-zero derivation σ of A, a contradiction. Hence $\mathcal{J}(B_i) = \mathcal{J}(A) = \{0\}$, $i = 1, \ldots, l$, a contradiction. This means that

$$\bigcap_{s=1}^{n} P_s = \mathcal{N}il(R) = \{0\}.$$

By Proposition 10 of [9, §2.1], R is a subdirect product of differentially trivial rings R/P_s $(s = 1, \ldots, n)$. The lemma is proved.

\textbf{Lemma 6.} Let R be a differentially trivial Noetherian ring such that R is not a domain and let the additive group R^+ be torsion. Then

$$R \cong \bigoplus_{i=1}^{n} \mathbb{Z}_{p_i^{k_i}} (k_i \in \mathbb{N}).$$

\textbf{Proof:} By Proposition 3(ii) every non-zero prime ideal of R is maximal. Consequently, R is an Artinian ring (see e.g. [7, Chapter IV, §2]) and the result follows from Corollary 2.12 of [6].

\textbf{Lemma 7.} If R is a differentially trivial semiprime Noetherian ring with the mixed additive group R^+ then

$$R = A \oplus B$$

is the ring direct sum of a differentially trivial ring A of characteristic 0 and a differentially trivial ring B of finite characteristic.

\textbf{Proof:} Let $\text{Ass}(R) = \{P_1, \ldots, P_n\}$. From $\mathcal{N}il(R) = \{0\}$ it follows that $n \geq 2$. Moreover, there are ideals $P, Q \in \text{Ass}(R)$ such that $\text{char}(R/P) = p$ for some
prime p and $\text{char}(R/Q) = 0$. Let π be the set of all primes p such that there is an ideal $P \in \text{Ass}(R)$ with $\text{char}(R/P) = p$.

We will show that $\mathcal{F}(R)^+$ is a π-group. For doing this, suppose by contrary that $\mathcal{F}(R)^+$ contains some non-zero element a of order q and $q \notin \pi$. Then

$$a \cdot qR = \{0\}$$

and, consequently, $qR \leq \bigcup_{i=1}^n P_i$, a contradiction. Since R is a Noetherian ring, the set π is finite and, further, $\mathcal{F}(R)^+$ is a group of exponent $p_0 = \prod_{p \in \pi} p$. If F_p is the Sylow p-subgroup of $\mathcal{F}(R)^+$ ($p \in \pi$) then

$$\mathcal{F}(R)^+ = F_p \oplus (\mathcal{F}(R) \cap pR)$$

is a group direct sum, where $\mathcal{F}(R) \cap pR$ is a p'-subgroup. Since the factor ring R/pR is differentially trivial and $(F_p + pR)/pR \cong F_p$, in view of Proposition 3(ii) and Lemma 6 the ideal $\mathcal{F}(R)$ is a differentially trivial ring with the identity element e. Thus $eR \leq \mathcal{F}(R)$ and

$$R = eR \oplus (1 - e)R$$

is a ring direct sum. If $eR \neq \mathcal{F}(R)$ and $f \in \mathcal{F}(R) \setminus eR$ then

$$f = eu + (1 - e)v$$

for some elements $u, v \in R$, and thus

$$f = e \cdot f = eu,$$

a contradiction. Hence $eR = \mathcal{F}(R)$ and $(1 - e)R$ is a differentially trivial ring of characteristic 0. The lemma is proved. \hfill \box

Theorem 8. Let R be a Noetherian ring. Then R is differentially trivial if and only if it is of one of the following types:

1) R is a differentially trivial Noetherian domain (i.e. R is algebraic over its prime subring if $\text{char}(R) = 0$, and $R = \{a^p \mid a \in R\}$ if $\text{char}(R) = p$);

2) R is a subdirect product of finitely many differentially trivial Noetherian domains of characteristic 0;

3) $R \cong \bigoplus_{i=1}^n \mathbb{Z}_{p_i^{k_i}}$;

4) $R = F \oplus S$ is a ring direct sum, where S is a ring of type 2) and F is a ring of type 3).

Proof: (\Rightarrow). Let R be a differentially trivial Noetherian ring. If R is a domain then by Proposition 1 it is a ring of type 1).

Suppose that R is not a domain. If the additive group R^+ is torsion-free (periodic, respectively) then R is a ring of type 2) by Lemma 5 (of type 3) by Lemma 6, respectively).
Assume that the additive group R^+ is mixed. As a consequence of Lemma 5
\[\mathcal{N}il(R) \leq \mathcal{F}(R). \]
If $\text{Ass}(R) = \{P\}$ then $\text{char}(R/P) = 0$ and
\[P = \mathcal{N}il(R) = \mathcal{F}(R). \]
Let a be a non-zero element of $\mathcal{F}(R)^+$ of finite order p. Then
\[a \cdot pR = \{0\} \]
and in view of Corollary 2 of [5, Chapter IV, §1, n°3] $pR \leq P$, a contradiction.
Hence $\text{Ass}(R) = \{P_1, \ldots, P_n\}$ for an integer $n \geq 2$. Since the group R^+ is nonperiodic, $\text{char}(R/Q) = 0$ for some ideal $Q \in \text{Ass}(R)$. If $\text{char}(R/P_i) = 0$ for all $i \ (i = 1, \ldots, n)$ then
\[\mathcal{F}(R) = \mathcal{N}il(R) \]
and for every non-zero element a of $\mathcal{F}(R)$ of order p we have
\[a \cdot pR = \{0\}. \]
By Corollary 2 of [5, Chapter IV, §1, n°3]
\[pR \leq P_s \]
for some integer $s \ (1 \leq s \leq n)$, a contradiction. Thus R has an ideal $M \in \text{Ass}(R)$ such that $\text{char}(R/M) = p$.
Now it is clear that
\[c \cdot \mathcal{N}il(R) = \mathcal{N}il(R) \]
for every element $c \in \mathcal{D}_R(0)$. From Theorem 2.2.15 of [4] it follows that $R/\mathcal{N}il(R)$ is a Goldie ring. Then by Proposition 4.1.3(ii) of [4] we obtain
\[\mathcal{D}_R(0) = \mathcal{D}_R(\mathcal{N}il(R)). \]
Using Robson’s Theorem (see [4, Theorem 4.1.9]), one sees that R is the ring direct sum of a semiprime ring S and finitely many local Artinian rings A_1, \ldots, A_k $(k \in \mathbb{N})$. In view of Corollary 2.12 of [6], A_i is either a differentially trivial field or isomorphic to some \mathbb{Z}_{p^k}. Finally, we can apply Lemma 7.

(\Rightarrow). It is obvious that R of type 1), 2) or 4) is differentially trivial. We will show that R of type 3) is differentially trivial. Since R is a subdirect product of finitely many differentially trivial domains R_1, \ldots, R_n of characteristic 0, Proposition 10 of [9, §2.1] yields that there are the ideals P_1, \ldots, P_n of R such that
\[\bigcap_{i=1}^{n} P_i = \{0\} \text{ and } R_i = R/P_i \ (i = 1, \ldots, n). \]
By Theorem 2.2.15 of [4] R is a Goldie ring. Then by Theorem 2.3.6 of [4] $S = D_{R}(0)$ is an Ore set and $S^{-1}R$ is an Artinian ring. $\text{Nil}(R) = \{0\}$ yields that $\mathcal{J}(S^{-1}R) = \{0\}$ and, consequently,

$$S^{-1}R = B_1 \oplus \ldots \oplus B_n$$

is the ring direct sum of fields B_1, \ldots, B_n such that $Q(R/P_i) \cong B_i \ (i = 1, \ldots, n)$. Clearly, every derivation of R can be extended to a derivation of $S^{-1}R$. Since the ring $S^{-1}R$ is differentially trivial we conclude that R is as desired. \square

Acknowledgment. I am grateful to the referee whose remarks helped me to improve the exposition of this paper.

References

Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Volodymyrska St 64, 252033 Kyiv, Ukraine

E-mail: topos@prima.franko.lviv.ua

(Received January 12, 1998, revised December 9, 1998)