On locally r-incomparable families of infinite-dimensional Cantor manifolds

VITALIJ A. CHATYRKO

Abstract. The notion of locally r-incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally r-incomparable families of different types of finite-dimensional Cantor manifolds.

Keywords: Cantor manifolds, countable-dimensional, weakly infinite-dimensional, strongly infinite-dimensional

Classification: 54F45

0. Introduction

Throughout this note we shall consider only separable metrizable spaces. By dimension we mean the covering dimension dim.

A subset L of a space X is a partition in X if there exist two non-empty open in X subsets U and V such that $L = X \setminus (U \cup V)$. We say in this case that X is separated by L.

An infinite-dimensional Cantor manifold is an infinite-dimensional compact space which cannot be separated by any finite-dimensional subspace.

There exist different types of infinite-dimensional Cantor manifolds. In particular, there exist countable-dimensional Cantor manifolds [Ch1], [O], weakly infinite-dimensional Cantor manifolds which cannot be separated by any countable-dimensional subspace (as recently showed by E. Pol [EP]) and even strongly infinite-dimensional Cantor manifolds which cannot be separated by any weakly infinite-dimensional subspace.

The last type of infinite-dimensional Cantor manifolds can be obtained as follows. It is well known that every strongly infinite-dimensional compact space contains an hereditarily strongly infinite-dimensional closed subset (see for example [R-S-W]). Every hereditarily infinite-dimensional compact space contains an infinite-dimensional Cantor manifold ([T]). Thus every strongly infinite-dimensional compact space contains hereditarily strongly infinite-dimensional Cantor manifold. Note that every hereditarily strongly infinite-dimensional Cantor manifold cannot be separated by any weakly infinite-dimensional subspace.

We shall call two compact spaces A, B injectively different if A does not embed into B and vice versa. A family \mathcal{A} of compacta is injectively different if every two different elements $A, B \in \mathcal{A}$ are injectively different.

E. Pol proved the following
Theorem 0.1 ([EP]). There exists an injectively different family \(A (|A| = 2^{\aleph_0}) \) of hereditarily infinite-dimensional Cantor manifolds.

Remark 0.1. The proof of Theorem 0.1 is based on the existence of hereditarily infinite-dimensional compact spaces. The existence of weakly infinite-dimensional hereditarily infinite-dimensional compact spaces is an open question ([RP1]). If we use in the proof of Theorem 0.1 an hereditarily strongly infinite-dimensional compactum (which exists) we shall obtain that the family \(A \) consists of hereditarily strongly infinite-dimensional Cantor manifolds.

Two compact spaces \(A, B \) are locally \(r \)-incomparable if any non-empty open subset of \(A \) does not embed into \(B \) and vice versa. A family \(A \) of compacta is locally \(r \)-incomparable if every two different elements \(A, B \in A \) are locally \(r \)-incomparable.

This notion was introduced by K. Borsuk. It is well known that for every \(n = 1, 2, \ldots \) there exists an uncountable locally \(r \)-incomparable family of \(n \)-dimensional AR-compacta (see for example [KB]). Recently this fact was used in order to define a fractional dimension function satisfying Menger’s axioms in the class of finite-dimensional locally compact spaces ([T-H]).

It is clear that every locally \(r \)-incomparable family of compacta is injectively different.

In this paper we shall construct uncountable locally \(r \)-incomparable families of named above types of infinite-dimensional Cantor manifolds.

1. Terminology and notation

The necessary information about notions and notations we use can be found in [A-P] and [E].

A space \(X \) is countable-dimensional (shortly c.d.) if \(X \) can be represented as a countable union of 0-dimensional subspaces.

A Cantor \(trInd \)-manifold of class \(\alpha, \alpha < \omega_1 \), is a compact space which cannot be separated by any partition \(L \) with \(trIndL < \alpha \).

It is known that for every \(\alpha < \omega_1 \) there exists a c.d. Cantor \(trInd \)-manifold of class \(\alpha \) ([Ch1], see also part 2).

A space \(X \) is A-weakly infinite-dimensional (shortly A-w.i.d.) if for each infinite sequence \((A_1, B_1), (A_2, B_2), \ldots \) of pairs of disjoint closed subsets of \(X \) there exist partitions \(L_i \) between \(A_i \) and \(B_i \) in \(X \) such that \(\bigcap_{i=1}^{\infty} L_i = \emptyset \).

A space \(X \) is hereditarily A-w.i.d. if every subspace of \(X \) is A-w.i.d.

A space \(X \) is A-strongly infinite-dimensional (shortly A-s.i.d.) if it is not A-w.i.d.

Remind that each c.d. space is A-w.i.d. Moreover, a space which is the union of countably many c.d. (A-w.i.d.) subspaces is c.d. (A-w.i.d.).

If a space \(X \) is compact then one say that \(X \) is weakly infinite-dimensional (shortly w.i.d.) or strongly infinite-dimensional (shortly s.i.d.) respectively.
It is known that there exists a w.i.d. compact space P which cannot be separated by any hereditarily A-w.i.d. subspace ([EP]). Note that P cannot be separated by any countable-dimensional subspace. In particular P is not c.d. Remind that the first example of a w.i.d. compactum which is not c.d. was given by R. Pol [RP2].

A compact space X is hereditarily infinite-dimensional, shortly h.i.d. (hereditarily strongly infinite-dimensional, shortly h.s.i.d.), if each nonempty closed subset of X is either 0-dimensional or infinite-dimensional (strongly infinite-dimensional).

The first example of h.i.d. compactum was given by D. Henderson [H1].

In [H2] D. Henderson has constructed a c.d. AR-compactum H^α with $\text{trInd}H^\alpha = \alpha$ for every $\alpha < \omega_1$. Remind this construction.

Let $H^I = I = [0, 1], p_1 = \{0\}$. Assume that for every $\beta < \alpha$ the compacta H^β and the points $p_\beta \in H^\beta$ have already been defined. If $\alpha = \beta + 1$, then we set $H^{\beta+1} = H^\beta \times I$ and $p_{\beta+1} = (p_\beta, 0)$. If α is a limit ordinal, then K_β is the union of the H^β and a half-open arc A_β such that $A_\beta \cap H^\beta = \{p_\beta\} = \{\text{endpoint of the arc } A_\beta\}, \beta < \alpha$. Let us define H^α as the one-point compactification of the free sum $\bigoplus_{\beta<\alpha} K_\beta$ and let p_α be the compactification point.

It is well known that every ordinal α may be represented in the form $\alpha = p(\alpha) + n(\alpha)$, where $p(\alpha)$ is a limit ordinal and $n(\alpha) < \omega$.

Note that the compactum H^α, where $n(\alpha) \geq 1, \alpha < \omega_1$, cannot be separated by a point.

A dimension function d is monotone if for any space X and any subset $A \subset X$ closed in X, $dA \leq dX$.

2. Variation of Fedorchuk’s construction

Let R be the real line, $Q \subset R$ be the rational numbers, $Irr \subset R$ be the irrational numbers and $I = [0, 1]$. The notation $Z \simeq Y$ will mean that spaces Z and Y are homeomorphic.

We shall follow [Ch2] as a variation of [F1], [F2]. Remind some definitions.

A continuous mapping $f : X \to Y$ is called fully closed if for any point $y \in Y$ and any finite covering $\{U_i : i = 1, 2, \ldots, s\}$ of $f^{-1}y$ by sets open in X, the set $\{y\} \cup (\bigcup_{i=1}^s f\#U_i)$ is open in Y. Here $f\#U = Y \setminus f(X \setminus U)$.

A continuous mapping $f : X \to Y$ is called ring-like if for any point $x \in X$ and arbitrary neighbourhoods Ox and Of_x, the set $f\#Ox$ contains a partition between the point fx and the set $Y \setminus Of_x$ in the space Y.

A continuous mapping $f : X \to Y$ is called monotone if for any point $y \in Y$ the set $f^{-1}y$ is connected.

A continuous mapping $f : X \to Y$ is called irreducible if for any non-empty open subset $O \subset X$ we have $f\#O \neq \emptyset$.

Consider a continuum Y with a countable everywhere dense subset $P = \{a_1, a_2, a_3, \ldots\} \subset Y$ and fix an embedding $Y \subset I^\omega$. Define a mapping $f : (0, 1] \to I^\omega$ as follows. Namely
\[f \left[1/(i+1), 1/i \right] : [1/(i+1), 1/i] \to I^\infty \text{ is a path between} \]
the points \(a_{i+1}\) and \(a_i\) in \(1/i\)-neighborhood of \(Y, i = 1, 2, \ldots\).

The mapping \(f\) satisfies the following conditions:

(a) for every open neighborhood \(O\) of the continuum \(Y\) in \(I^\infty\) there exists a natural number \(n\) such that \(f(0, 1/n] \subset O\);

(b) for every non-empty open subset \(U \subset Y\) and every natural number \(n\) there exists a number \(m \geq n\) such that \(f(1/m) \in U\).

2.a Particular case
Define a mapping \(g : [-1, 1] \setminus \{0\} \to I^\infty\) by \(g(x) = f(|x|)\) and mappings
\[g_t : [-1 + t, 1 + t] \setminus \{t\} \to I^\infty \text{ by } g_t(x) = g(x - t), \text{ where } t \in R. \]
Consider the disjoint union \(B = \bigcup\{Y_t : t \in R\}\), where \(Y_t\) is a point, if \(t \in R \setminus Q\), and \(Y_t \simeq Y\) if \(t \in Q\).
Let \(p_t : Y \to Y_t\) be the homeomorphism above, where \(t \in Q\).
Define the mapping \(\pi : B \to R\) as follows, \(\pi(y) = t\), if \(y \in Y_t\).
Let \(\{V_n\}_{n=1}^\infty\) be a base in \(R\), and \(\{U_k\}_{k=1}^\infty\) be a base in \(I^\infty\).
The topology \(\tau\) on the set \(B\) we define as follows.
We take all sets \(\pi^{-1}V_n, n = 1, 2, \ldots\), and \(O(U_k, t, V_n) = p_t(U_k \cap Y) \cup \pi^{-1}(g_t^{-1}U_k \cap V_n)\), where \(t \in Q \cap V_n\) and \(m, n = 1, 2, \ldots\), as the basis sets of the topology on \(B\).

Note that in the case the mapping \(\pi\) is fully closed, ring-like, irreducible and monotone.

Denote the subspace \(\pi^{-1}[0, 1]\) of \(B\) via \(F(Y)\).
Some properties of \(F(Y)\).

(a) \(FY\) is a continuum which is the disjoint union of continua \(Y_t, t \in [0, 1]\).

(b) \(F(Y) \setminus \bigcup\{Y_t : t \in Q\} \simeq Irr \cap I\).

(c) every non-empty open subset of \(F(Y)\) contains a copy of \(Y\).

(d) every subcontinuum of \(F(Y)\) either embeds in \(Y\) or is equal to \(\pi^{-1}[a, b]\), where \(0 \leq a < b \leq 1\).

(e) \(F(Y)\) is c.d. (w.i.d., h.s.i.d.) if \(Y\) is c.d. (w.i.d., h.s.i.d.).

Example of c.d. Cantor \(trInd\)-manifold of class \((\alpha + 1), \alpha < \omega_1\).
Consider the path-connected compactum \(Z = F(H^\alpha) \times I / F(H^\alpha) \times \{0\}\).
Denote the compactum \(Z^2\) via \(A(H^\alpha)\). It is clear that \(A(H^\alpha)\) is c.d. and every non-empty open subset of \(Z\) contains \(H^{\alpha+1}\). One can prove (see [Ch1]) that for every partition \(L\) in \(A(H^\alpha)\) we have \(trIndL \geq \alpha + 1\). Hence the continuum \(A(H^\alpha)\) is a Cantor \(trInd\)-manifold of class \((\alpha + 1)\).
2.6 General case

Consider a continuum \(X \) and a countable subset \(L \) of \(X \). Fix a point \(x \in L \) and a sequence \(\{L_i^x\}_{i=1}^\infty \) of partitions in \(X \) such that

(a) \(L_i^x = X \setminus (U_i^x \cup V_i^x) \), where \(U_i^x \), \(V_i^x \) are disjoint non-empty open subsets of the continuum \(X \) and \(x \in U_i^x \) for every \(i \);

(b) \(U_i^x \cup L_i^x \subset U_{i-1}^x \), \(i = 2, 3, \ldots \);

(c) \(\{U_i^x\}_{i=1}^\infty \) is a base in the point \(x \).

Note that all partitions \(L_i^x \), \(i = 1, 2, \ldots \) are non-empty.

Define a mapping \(h_x : V_i^x \cup \bigcup_{i=1}^\infty L_i^x \to (0, 1] \) as follows

(a) \(h_x(X \setminus U_i^x) = 1 \);

(b) \(h_x(L_i^x) = 1/i, i = 2, 3, \ldots \).

By \(q_x : X \setminus \{x\} \to (0, 1] \) we denote an extension of \(h_x \) on \(X \setminus \{x\} \) such that
\[q_x((U_i^x \cup L_i^x) \setminus U_{i+1}^x) \subset [1/(i+1), 1/i], \quad i = 1, 2, \ldots \, . \]

Put \(g_x = f \circ q_x \). The mapping \(g_x \) satisfies the following conditions:

(a) for every open neighborhood \(O \) of the continuum \(Y \) in \(I^\infty \) there exists a natural number \(n \) such that \(g_x U_n^x \subset O \);

(b) for every non-empty open subset \(U \subset Y \) and every natural number \(n \) there exists a number \(m \geq n \) such that \(g_x(L_m^x) \subset U \).

Consider the disjoint union \(B(X, Y, L) = \bigcup\{Y_x : x \in X\} \), where \(Y_x \) is a point if \(x \in X \setminus L \) and \(Y_x \simeq Y \) if \(x \in L \).

Let \(p_x : Y \to Y_x \) be the homeomorphism above, where \(x \in L \).

Define the mapping \(\pi : B(X, Y, L) \to X \) by \(\pi(y) = x \) if \(y \in Y_x \).

Let \(\{V_n\}_{n=1}^\infty \) be a base in \(X \), and \(\{U_k\}_{k=1}^\infty \) be a base in \(I^\infty \).

We define the topology \(\tau \) on the set \(B(X, Y, L) \) as follows.
We take all sets \(\pi^{-1}V_n, n = 1, 2, \ldots \), and \(O(U_k, x, V_n) = p_x(U_k \cap Y) \cup \pi^{-1}(g_x^{-1}U_k \cap V_n) \), where \(x \in L \cap V_n \) and \(m, n = 1, 2, \ldots \), as the basis sets of the topology on \(B(X, Y, L) \).

Note that in this case the mapping \(\pi \) is fully closed, ring-like, irreducible and monotone.

Note some properties of \(B(X, Y, L) \).

Proposition 2.1. (a) \(B(X, Y, L) \) is a continuum which is the disjoint union of continua \(Y_x, x \in X \).

(b) \(B(X, Y, L) \setminus \bigcup\{Y_x : x \in L\} \simeq X \setminus L \).

(c) Every non-empty open subset of \(B(X, Y, L) \) contains a copy of \(Y \) if \(L \) is an everywhere dense subset of \(X \).
(d) Every subcontinuum C of $B(X,Y,L)$ either embeds in Y or is equal to $\pi^{-1}\pi C = B(\pi C, Y, L \cap \pi C)$. Moreover in the last case either C lies in $X \setminus L$ if $L \cap \pi C = \emptyset$ or C contains a copy of Y if $L \cap \pi C \neq \emptyset$.

(e) $B(X,Y,L)$ is c.d. (w.i.d., h.s.i.d.) if X,Y are c.d. (w.i.d., h.s.i.d.).

(f) Let C be a partition in $B(X,Y,L)$. Then there exists a partition C_1 in X such that for each subspace Z of C_1 the subspace $Z \setminus L$ embeds into C. In particular, if X is an infinite-dimensional Cantor manifold then $B(X,Y,L)$ is the same.

Proof: (a)–(d) follow from the construction and the properties of π.

(e) We shall prove only that the continuum $B(X,Y,L)$ is w.i.d. if the continua X,Y are w.i.d. Consider a countable family $\{(A^i_j,B^j_i) : i = 0,1,\ldots; j = 1,2,\ldots\}$ of pairs of disjoint closed subsets of $B(X,Y,L)$. Let $L = \{l_1,l_2,\ldots\}$. For every $i = 1,2,\ldots$ there exist partitions L^i_j between A^i_j and B^i_j in $B(X,Y,L)$ such that $\bigcap_{j=1}^\infty L^i_j \cap Y_{i_j} = \emptyset$. Denote the compactum $\bigcap_{i=1}^\infty (\bigcap_{j=1}^\infty L^i_j)$ via A. Note that $A \subset B(X,Y,L) \cup \{Y_x : t \in L\}$ $\simeq X \setminus L$ and hence A is w.i.d. There exist partitions L^0_j between A^0_j and B^0_j in $B(X,Y,L)$ such that $\bigcap_{j=1}^\infty L^0_j \cap A = \bigcap_{i=1}^\infty (\bigcap_{j=1}^\infty L^i_j) = \emptyset$. Hence the compactum $B(X,Y,L)$ is w.i.d.

(f) Let $C = B(X,Y,L) \setminus (U \cup V)$ where U,V are disjoint non-empty open subsets of $B(X,Y,L)$. Note that the subsets $\pi U, \pi V$ of X are disjoint non-empty open and the subset $C_1 = X \setminus (\pi U \cup \pi V)$ is a partition in X. It is clear that for each subspace Z of C_1 the subspace $Z \setminus L$ embeds into C. Suppose that X is an infinite-dimensional Cantor manifold and the partition C is finite-dimensional. Therefore the subspace $C_1 \setminus L$ is finite-dimensional and hence the partition C_1 is finite-dimensional too. It is a contradiction.

Proposition 2.2. Let L be an everywhere dense subset of X and Y_1,Y_2 be injectively different continua, which do not embed into X. Then continua $B(X,Y_1,L)$, $B(X,Y_2,L)$ are locally r-incomparable.

Proof: Let U be an open non-empty subset of $B(X,Y_1,L)$. Suppose that $g : U \to B(X,Y_2,L)$ is an embedding. By Proposition 2.1 (c) U contains a copy of Y_1. By Proposition 2.1 (d) the image $g(Y_1)$ of the copy of Y_1 either embeds into Y_2 (it is a contradiction) or is equal to $\pi^{-1}\pi g(Y_1)$. In the last case $g(Y_1)$ either lies in $X \setminus L \subset X$ or contains a copy of Y_2. It is a contradiction too.

3. On E. Pol’s proposition

The following statement in fact was proved in [EP].

Proposition 3.1. Let A,B be two c.d. continua which cannot be separated by a point and which are injectively different. Then there exists an injectively different family $\{L_a : a \in \{0,1\}^\infty\}$ of c.d continua such that for every $a \in \{0,1\}^\infty$, L_a contains copies of A and B.

We repeat here the description from [EP].
Choose two pairs of different points $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Let X_1, X_2, \ldots be a sequence of spaces such that X_i is a copy of A or B and $x_i^j = a_j$ if $X_i = A$ and $x_i^j = b_j$ if $X_i = B$, for $j = 1, 2$. Consider the equivalence relation E on the free sum $X = \bigoplus_{i=1}^{\infty} X_i$ such that xEy iff $x = y$ or $x = x_i^1$ and $y = x_i^{i+1}$ for some $i \in \mathbb{N}$.

Let $Y = X/E$ be the quotient space and $Z = Z(X_1, X_2, \ldots)$ be the one-point compactification of Y. Then Z is a c.d. continuum. Let K be the class of all spaces $Z(X_1, X_2, \ldots)$ obtained in this way.

It was shown in [EP] that K contains an injectively different uncountable family $\{L_a : a \in \{0, 1\}^\infty\}$. Namely, for $a = \{a_k\}_{k=1}^{\infty} \in \{0, 1\}^\infty$, $L_a = Z(X_1^a, X_2^a, \ldots)$, where $X_1^a = A, X_2^a = B$ and for $k = 1, 2, \ldots$:

- if $a_k = 0$ then X_{5k-3+l}^a is A, for $l = 1, 2$; and it is B, for $l = 3, 4, 5$;
- if $a_k = 1$ then X_{5k-3+l}^a is A, for $l = 1, 2, 3$; and it is B, for $l = 4, 5$;

4. Two c.d. injectively different infinite-dimensional continua which cannot be separated by a point

Let γ be an infinite ordinal with $n(\gamma) \geq 1$. Remind that the compactum $A(H^\gamma)$ is a c.d. Cantor trInd-manifold of class $(\gamma + 1)$. Put $\beta = trIndA(H^\gamma) + 1 < \omega_1$. Note that $n(\beta) \geq 1$. Continua $A(H^\gamma)$ and H^β cannot be separated by a point. Since $trIndH^\beta = \beta > trIndA(H^\gamma)$, H^β does not embed into $A(H^\gamma)$.

We shall prove that $A(H^\gamma)$ does not embed into H^β. Remind that H^β is the union of countably many finite-dimensional compacta. Assume that $A(H^\gamma)$ embeds into H^β. Hence $A(H^\gamma)$ is the union of countably many finite-dimensional compacta at least one of which contains a non-empty open subset of $A(H^\gamma)$. But every non-empty open subset of $A(H^\gamma)$ contains a copy of H^γ with $trIndH^\gamma = \gamma \geq \omega$. It is a contradiction. Hence $A(H^\gamma)$ does not embed into H^β.

Note that both compacta $A(H^\gamma)$ and H^β contain H^γ. Now with help of Proposition 3.1 the following statement is evident.

Proposition 4.1. For every ordinal $\gamma < \omega_1$ there exists an injectively different family $\{L_a : a \in \{0, 1\}^\infty\}$ of c.d continua such that for every $a \in \{0, 1\}^\infty$, L_a contains a copy of H^γ.

5. Main results

Here we shall construct uncountable locally r-incomparable families of named in the introduction types of infinite-dimensional Cantor manifolds.

First we need the following evident (see the separation theorem for dimension 0 ([E, p.11])

Lemma 5.1. Let A be a 0-dimensional subset of a compactum Z. Assume that $trIndQ < \alpha$ for every compactum $Q \subset Z \setminus A$. Then $trIndZ \leq \alpha$.

In particular, if \(\text{trInd} Z \geq \beta + 1 \), then there exists a compactum \(Q \subset Z \setminus A \) such that \(\text{trInd} Q = \beta \).

Theorem 5.1. For every \(\alpha < \omega_1 \) there exists a locally \(r \)-incomparable family \(A (|A| = 2^{\aleph_0}) \) of c.d. Cantor \(\text{trInd} \)-manifolds of class \(\alpha \).

Proof: Fix an ordinal \(\alpha < \omega_1 \). Denote \(A(H^\alpha) \) via \(X \). Note that \(X \) is a c.d. Cantor \(\text{trInd} \)-manifold of class \((\alpha + 1) \). Let \(\gamma = \text{trInd} X + 1 \). By Proposition 4.1 there exists an injectively different family \(\{ L_a : a \in \{0,1\}^\infty \} \) of c.d continua such that for every \(a \in \{0,1\}^\infty \), \(L_a \) contains a copy of \(H^\gamma \). Remind that \(\text{trInd} H^\gamma = \gamma \) ([H2]) and the dimension \(\text{trInd} \) is monotone. Hence for every \(a \in \{0,1\}^\infty \), \(L_a \) does not embed into \(X \).

Let \(L \) be an everywhere dense countable subset of \(X \).

By Propositions 2.1(e), (f), 2.2 and Lemma 5.1 the family \(\{ B(X, L_a, L) : a \in \{0,1\}^\infty \} \) is locally \(r \)-incomparable and it consists of c.d. Cantor \(\text{trInd} \)-manifolds of class \(\alpha \). \(\square \)

Now we need the following evident

Lemma 5.2. Let \(X \) be a \(A \)-s.i.d. space and \(Y \) be a 0-dimensional subspace of \(X \). Then the subspace \(X \setminus Y \) is \(A \)-s.i.d.

Theorem 5.2. There exists a locally \(r \)-incomparable family \(A (|A| = 2^{\aleph_0}) \) of w.i.d. Cantor manifolds which cannot be separated by any hereditarily \(A \)-w.i.d. subspace.

Proof: Denote the w.i.d. compactum \(P \) from part 1 via \(X \). Let \(\text{dim}_w X = \alpha < \omega_1 \), where \(\text{dim}_w \) is Borst’s transfinite extension of the covering dimension \(\text{dim} \) ([PB]). Put \(\gamma = \alpha + 1 \). By Proposition 4.1 there exists an injectively different family \(\{ L_a : a \in \{0,1\}^\infty \} \) of c.d continua such that for every \(a \in \{0,1\}^\infty \), \(L_a \) contains a copy of \(H^\gamma \). Remind that \(\text{dim}_w H^\gamma = \gamma \) ([PB]) and the dimension \(\text{dim}_w \) is monotone. Hence for every \(a \in \{0,1\}^\infty \), \(L_a \) does not embed into \(X \). Let \(L \) be an everywhere dense countable subset of \(X \). By Propositions 2.1(e), (f), 2.2 and Lemma 5.2, the family \(\{ B(X, L_a, L) : a \in \{0,1\}^\infty \} \) is locally \(r \)-incomparable and it consists of w.i.d. Cantor manifolds which cannot be separated by any hereditarily \(A \)-w.i.d. subspace. \(\square \)

Theorem 5.3. There exists a locally \(r \)-incomparable family \(A (|A| = 2^{\aleph_0}) \) of h.s.i.d. Cantor manifolds.

Proof: By Theorem 0.1 (see also Remark 0.1) there exists an injectively different family \(\{ L_a : a \in \{0,1\}^\infty \} \) of h.s.i.d. Cantor manifolds. Put \(X = L_{(0,0,...)} \) and \(M_{(b_1,b_2,...)} = L_{(1,b_1,b_2,...)} \) for every \((b_1,b_2,...) \in \{0,1\}^\infty \). Note that for every \(b \in \{0,1\}^\infty \), \(M_b \) does not embed into \(X \). Let \(L \) be an everywhere dense countable subset of \(X \). By Propositions 2.1(e), (f) and 2.2 the family \(\{ B(X, M_b, L) : b \in \{0,1\}^\infty \} \) is locally \(r \)-incomparable and it consists of h.s.i.d. Cantor manifolds. \(\square \)
On locally r-incomparable families of infinite-dimensional Cantor manifolds

References

Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
E-mail: vitja@mai.liu.se

(Received September 16, 1997)