On the cardinality of Hausdorff spaces

ALESSANDRO FEDELI

Abstract. The aim of this paper is to show, using the reflection principle, three new cardinal inequalities. These results improve some well-known bounds on the cardinality of Hausdorff spaces.

Keywords: cardinal inequality, Hausdorff space

Classification: 54A25

Two of the most known inequalities in the theory of cardinal functions are the Hajnal-Juhász’s inequality [7]: “For $X \in T_2$, $|X| \leq 2^c(X)\chi(X)$” and the Arhangel’skii’s inequality [5]: “For $X \in T_2$, $|X| \leq 2^L(X)t(X)\psi(X)$”.

In this paper we will use the language of elementary submodels (see [4], [10], [1] and [2]) to establish three new cardinal inequalities which generalize the results mentioned above. We refer the reader to [3], [5], [7] for notations and terminology not explicitly given. χ, c, ψ, t, L and π_χ denote character, cellularity, pseudocharacter, tightness, Lindelöf degree and π-character respectively.

Definitions. (i) Let X be a Hausdorff space.

The closed pseudocharacter of X, denoted $\psi_c(X)$, is the smallest infinite cardinal κ such that for every $x \in X$ there is a collection U_x of open neighbourhoods of x such that $\bigcap \{U : U \in U_x\} = \{x\}$ and $|U_x| \leq \kappa$ ([7]).

The Hausdorff pseudocharacter of X, denoted $H\psi(X)$, is the smallest infinite cardinal κ such that for every $x \in X$ there is a collection U_x of open neighbourhoods of x with $|U_x| \leq \kappa$ such that if $x \neq y$, there exist $U \in U_x$, $V \in U_y$ with $U \cap V = \emptyset$ ([6]).

Clearly $\psi_c(X) \leq H\psi(X) \leq \chi(X)$ for every Hausdorff space X.

(ii) Let X be a topological space, $ac(X)$ is the smallest infinite cardinal κ such that there is a subset S of X such that $|S| \leq 2^\kappa$ and for every open collection U in X there is a $V \in [U]^{\leq \kappa}$ with $\bigcup U \subset S \cup \bigcup \{V : V \in V\}$.

Observe that $ac(X) \leq c(X)$ for every space X.

Theorem 1. If X is a T_2-space then $|X| \leq 2^{ac(X)H\psi(X)}$.

Proof: Let $\lambda = ac(X)H\psi(X)$, $\kappa = 2^\lambda$, let τ be the topology on X and let S be an element of $[X]^{\leq \kappa}$ witnessing that $ac(X) \leq \lambda$. For every $x \in X$ let B_x be a collection of open neighbourhoods of x with $|B_x| \leq \lambda$ such that if $x \neq y$ then
there exist \(U \in \mathcal{B}_x, V \in \mathcal{B}_y \) such that \(U \cap V = \emptyset \), and let \(f : X \to \mathcal{P}(\tau) \) be the map defined by \(f(x) = \mathcal{B}_x \) for every \(x \in X \).

Let \(A = \kappa \cup \{S, X, \tau, \kappa, f\} \) and take a set \(\mathcal{M} \) such that \(\mathcal{M} \supset A, |\mathcal{M}| = \kappa \) and which reflects enough formulas to carry out our argument. To be more precise we ask that \(\mathcal{M} \) reflects enough formulas so that the following conditions are satisfied:

(i) \(C \in \mathcal{M} \) for every \(C \in [\mathcal{M}]^{\leq \kappa} \);
(ii) \(\mathcal{B}_x \in \mathcal{M} \) for every \(x \in X \cap \mathcal{M} \);
(iii) if \(B \subset X \) and \(B \in \mathcal{M} \) then \(\overline{B} \in \mathcal{M} \);
(iv) if \(A \in \mathcal{M} \) then \(\bigcup A \in \mathcal{M} \);
(v) if \(B \) is a subset of \(X \) such that \(X \cap \mathcal{M} \subset B \) and \(B \in \mathcal{M} \) then \(X = B \);
(vi) if \(E \in \mathcal{M} \) and \(|E| \leq \kappa \) then \(E \subset \mathcal{M} \).

Observe that by (ii) and (vi) \(\mathcal{B}_y \subset \mathcal{M} \) for every \(y \in X \cap \mathcal{M} \).

Claim: \(X \subset \mathcal{M} \) (and hence \(|X| \leq 2^{ac(X)H\psi(X)} \)). Suppose not and take \(p \in X \setminus \mathcal{M} \). Let \(\mathcal{B}_p = \{B_\alpha\}_{\alpha < \lambda} \), clearly \(\bigcap \{\overline{B}_\alpha : \alpha < \lambda\} = \{p\} \). Now for every \(\alpha < \lambda \) let \(\langle X \cap \mathcal{M}\rangle_\alpha = \{y \in X \cap \mathcal{M}: \exists B \in \mathcal{B}_y \text{ for which } B \cap B_\alpha = \emptyset\} \).

For every \(y \in \langle X \cap \mathcal{M}\rangle_\alpha \) choose a \(B_{y, \alpha} \in \mathcal{B}_y \) such that \(B_{y, \alpha} \cap B_\alpha = \emptyset \), clearly \(\mathcal{U}_\alpha = \{B_{y, \alpha} : y \in \langle X \cap \mathcal{M}\rangle_\alpha\} \) covers \(\langle X \cap \mathcal{M}\rangle_\alpha \). Since \(ac(X) \leq \lambda \) it follows that there is a \(\mathcal{V}_\alpha \in [\mathcal{U}_\alpha]^{\leq \lambda} \) such that \(\langle X \cap \mathcal{M}\rangle_\alpha \subset S \cup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \). Observe that \(p \notin S \cup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \) (\(S \in \mathcal{M} \) and \(|S| \leq \kappa \) so by (vi) \(S \subset \mathcal{M} \), moreover \(\{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \subset X \setminus B_\alpha \)). We have also \(\bigcup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \subset \mathcal{M} \) \(\forall \mathcal{V} \in \mathcal{M} \) for every \(\mathcal{V} \in \mathcal{V}_\alpha \), so by (iii) \(\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha} \subset \mathcal{M} \) and \(\{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \subset \mathcal{M} \) by (i), hence by (iv) \(\bigcup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \subset \mathcal{M} \), so \(\bigcup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \subset \mathcal{M} \) by (iii)).

Set \(C_\alpha = S \cup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \) for every \(\alpha < \lambda \) and observe that \(C_\alpha \in \mathcal{M} \) (recall that \(S, \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}_\alpha}\} \in \mathcal{M} \)). Now \(X \cap \mathcal{M} \subset \{C_\alpha : \alpha < \lambda\} \), since \(\{C_\alpha : \alpha < \lambda\} \in \mathcal{M} \), so \(\{C_\alpha : \alpha < \lambda\} \in \mathcal{M} \), hence by (iv) \(\{C_\alpha : \alpha < \lambda\} \in \mathcal{M} \) it follows by (v) that \(\{C_\alpha : \alpha < \lambda\} = X \). This is a contradiction (\(p \notin \{C_\alpha : \alpha < \lambda\}\)). \(\square \)

Corollary 2 ([7]). If \(X \) is a \(T_2 \)-space then \(|X| \leq 2^{ac(X)\chi(X)} \).

Remark 3. The above result of Hajnal and Juhász has been improved also by Hodel, in fact in [6] it is shown that \(|X| \leq 2^{c(X)H\psi(X)} \) for every Hausdorff space \(X \). It is clear that Theorem 1 generalizes also this result of Hodel.

Now let \(X \) be the Michael line, i.e. let \(X \) be \(\mathbb{R} \) topologized by isolating the points of \(\mathbb{R} \setminus \mathbb{Q} \) and leaving the points of \(\mathbb{Q} \) with their usual neighbourhoods. Then \(X \) is a normal space such that \(|X| = 2^{ac(X)H\psi(X)} < 2^{c(X)H\psi(X)} \).

Observe that in Theorem 1 \(H\psi(X) \) cannot be replaced by \(\psi_c(X) \), in fact for every infinite cardinal \(\kappa \) there is a \(T_3 \)-space \(X \) with \(|X| = \kappa \) and \(\psi(X) = c(X) = ac(X) = \omega \) (see e.g. [5]).

Definition 4. Let \(X \) be a topological space, \(lc(X) \) is the smallest infinite cardinal \(\kappa \) such that there is a closed subset \(F \) of \(X \) such that \(|F| \leq 2^\kappa \) and for every open collection \(\mathcal{U} \) in \(X \) there is a \(\mathcal{V} \in [\mathcal{U}]^{\leq \kappa} \) with \(\bigcup \mathcal{U} \subset F \cup \bigcup \{\overline{\mathcal{V} : \mathcal{V} \in \mathcal{V}}\} \).
Clearly \(ac(X) \leq lc(X) \leq c(X) \) for every space \(X \).

Theorem 5. If \(X \) is a Hausdorff space then \(|X| \leq 2^{lc(X)\pi_X(X)\psi_c(X)}\).

Proof: Let \(\lambda = lc(X)\pi_X(X)\psi_c(X) \) and let \(\kappa = 2^\lambda \) be the topology on \(X \) and let \(\tau \) be the map defined by \(f(x) = B_x \) for every \(x \in X \). Let \(A = \kappa \cup \{F, X, \tau, \kappa, f\} \) and take a set \(M \supset A \) such that \(|M| = \kappa \) and which reflects enough formulas so that the conditions (i)-(vi) listed in Theorem 1 are satisfied.

Claim: \(X \subset M \) (and hence \(|X| \leq 2^{lc(X)\pi_X(X)\psi_c(X)}\)). Suppose not and take \(p \in X \setminus M \). Let \(\{G_\alpha : \alpha \in \lambda\} \) be a family of open neighbourhoods of \(p \) such that \(\bigcap\{G_\alpha : \alpha \in \lambda\} = \{p\} \). Set \(V_\alpha = X \setminus \overline{G_\alpha} \) and \(S_\alpha = X \cap M \cap V_\alpha \) for every \(\alpha \in \lambda \). Now let \(W_\alpha = \{B : B \in B_y, y \in S_\alpha \cap B \subset V_\alpha\} \), since \(lc(X) \leq \lambda \) it follows that there is a \(\nu_\alpha \in |W_\alpha|^{\leq \lambda} \) such that \(\bigcup W_\alpha \subset F \cup \bigcup\{V : V \in V_\alpha\} \).

Since \(S_\alpha \subset \bigcup W_\alpha \) (let \(y \in S_\alpha \) and \(U \) be an open neighbourhood of \(y \), \(y \notin \overline{G_\alpha} \)) so there is an open neighbourhood \(V \) of \(y \) such that \(V \cap G_\alpha = \emptyset \), then \(B \subset U \cap V \), \(\emptyset \neq B \subset (\bigcup W_\alpha) \cap U \) and \(y \in \bigcup W_\alpha \) it follows that \(S_\alpha \subset F \cup \bigcup\{V : V \in V_\alpha\} \); moreover \(\bigcup\{V : V \in V_\alpha\} \in M \) and \(p \notin F \cup \bigcup\{V : V \in V_\alpha\} \).

Set \(C_\alpha = \bigcup\{V : V \in V_\alpha\} \), since \(X \cap M \subset F \cup \bigcup\{C_\alpha : \alpha < \lambda\} \) and \(F \cup \bigcup\{C_\alpha : \alpha < \lambda\} \in M \) it follows that \(F \cup \bigcup\{C_\alpha : \alpha < \lambda\} = X \), a contradiction. \(\square \)

By Theorem 5 it follows again that \(|X| \leq 2^{c(X)\chi(X)}\) for every \(T_2 \)-space \(X \).

Moreover we have the following

Corollary 6 ([6]). If \(X \) is a \(T_3 \)-space then \(|X| \leq 2^{c(X)\pi_X(X)\psi_c(X)}\).

Remark 7. A generalization of the inequality in corollary 6 has also been obtained by Sun in [8]: "\(|X| \leq 2^{c(X)\pi_X(X)\psi_c(X)}\) for every Hausdorff space \(X \)." Note that even this result is a corollary of Theorem 5. Moreover if \(X \) is the Michael line then \(|X| = 2^{lc(X)\pi_X(X)\psi_c(X)} < 2^{c(X)\pi_X(X)\psi_c(X)}\). Observe also that the \(\pi \)-character cannot be omitted in Theorem 5 (see the comment at the end of Remark 3).

Now let us turn our attention to the Arhangel’skii’s inequality: "For \(X \in T_2 \), \(|X| \leq 2^{L(X)\chi(X)\psi_c(X)}\)."
Theorem 8. If X is a Hausdorff space then $|X| \leq 2^{aqL(X)t(X)\psi_c(X)}$.

Proof: Let $\lambda = aqL(X)t(X)\psi_c(X)$, $\kappa = 2^\lambda$, let τ be the topology on X and let S be an element of $[X]^{<\kappa}$ witnessing that $aqL(X) \leq \lambda$. For every $x \in X$ let B_x be a family of open neighbourhoods of x with $|B_x| \leq \lambda$ and $\bigcap \{B : B \in B_x\} = \{x\}$, and let $f : X \to \mathcal{P}(\tau)$ be the map defined by $f(x) = B_x$ for every $x \in X$. Let $A = \kappa \cup \{S, X, \tau, \kappa, f\}$ and take a set $\mathcal{M} \supset A$ such that $|\mathcal{M}| = \kappa$ and which reflects enough formulas so that the conditions (i)–(vi) listed in Theorem 1 are satisfied. First observe that $X \cap \mathcal{M}$ is a closed subset of X, although this fact follows from a general result which can be found in [4] we give a proof of it for the sake of completeness: let $x \in X \cap \mathcal{M}$, since $t(X) \leq \lambda$ there is a $C \in [X \cap \mathcal{M}]^{\leq \lambda}$ such that $x \in \overline{C}$. Since $C \in \mathcal{M}$ (by (i)), it follows that $\overline{C} \in \mathcal{M}$ (by (iii)). Now it remains to observe that $|\overline{C}| \leq \kappa$ (recall that $t(X)\psi_c(X) \leq \lambda$) and hence by (vi) $x \in \overline{C} \subset X \cap \mathcal{M}$.

We have done if we show that $X \subset \mathcal{M}$. Suppose there is a $p \in X \setminus \mathcal{M}$, for every $y \in X \cap \mathcal{M}$ let $B_y \in B_y$ such that $p \notin B_y$. Since $\mathcal{U} = \{B_y : y \in X \cap \mathcal{M}\} \cup \{X \setminus \mathcal{M}\}$ is an open cover of X and $aqL(X) \leq \lambda$ there is a $\mathcal{V} \in [\mathcal{U}]^{<\lambda}$ such that $X = \mathcal{S} \cup (\bigcup \mathcal{V})$. Let $\mathcal{W} = \{B_y : B_y \in \mathcal{V}\}$, since $X \cap \mathcal{M} \subset \mathcal{S} \cup (\bigcup \mathcal{W})$ and $\mathcal{S} \cup (\bigcup \mathcal{W}) \in \mathcal{M}$ it follows that $X = \mathcal{S} \cup (\bigcup \mathcal{W})$, a contradiction ($p \notin \mathcal{S} \cup (\bigcup \mathcal{W})$).

A consequence of Theorem 8 is the following generalization of the Arhangel’skii’s inequality.

Corollary 9 ([8]). If X is a Hausdorff space then $|X| \leq 2^{aqL(X)t(X)\psi_c(X)}$.

Proof: It is enough to note that $aqL(X) \leq qL(X)t(X)\psi_c(X)$. \square

Remark 10. Let κ be an infinite cardinal number and let X be the discrete space of cardinality 2^κ. This space shows that Theorem 8 can give a better estimation than the one in Corollary 9.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF L’AQUILA, VIA VETOIO (LOC. COPPITO), 67100 L’AQUILA, ITALY
E-mail: fedeli@axscaq.aquila.infn.it

(Received September 11, 1997)