On two results of Singhof

Augustin-Liviu Mare

Abstract. For a compact connected semisimple Lie group G we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of G, respectively the 1-dimensional relative category of a maximal torus T in G. The techniques will be classical, but we shall also apply some basic results concerning the so-called A-category (cf. [14]).

Keywords: Lusternik-Schnirelmann category, Lie groups, adjoint orbits

Classification: 55P50, 57T20, 57T15

The following results were proved in [13] by methods which combine in an ingenious manner the classical theories of Lie groups and of Lusternik-Schnirelmann-type categories.

Theorem A. Let G be a compact connected Lie group and T a maximal torus of G. Then

$$\text{cat } G/T = \frac{1}{2} \dim G/T + 1.$$

For an arbitrary finitely generated Abelian group π, denote by $\varphi(\pi)$ the smallest number n such that π is the direct sum of n cyclic groups.

Theorem B. Let G be a compact connected Lie group and T a maximal torus of G. Then

$$\text{cat}_G T = \varphi(\pi_1 G) + 1.$$

Consider now \mathfrak{g} the Lie algebra of G. Take $X \in \mathfrak{g}$ and denote by G_X the Ad-stabilizer of X (note that X is regular iff G_X is a maximal torus in G). The adjoint orbits $\text{Ad } G.X$ were during the last years frequently considered and studied, both from the topological point of view (mention only the detailed descriptions of the cohomology ring given in [1] or [2]) and from differential perspective (they represent fundamental examples of the so-called theory of isoparametric submanifolds, recently initiated by R. Palais and C.L. Terng). In connection with Theorem A we shall prove:

Theorem 1. Let G be a compact connected semisimple Lie group and X an element of its Lie algebra. Then

$$\text{cat } (\text{Ad } G.X) = \frac{1}{2} \dim(\text{Ad } G.X) + 1.$$
In [6] Fox considers for the first time the so-called q-dimensional relative (homotopical) category associated to an inclusion. Many other developments were obtained afterwards; among them, the notion of \mathcal{A}-category (cf. [4, Examples 1.2(3)]). The following result concerning the 1-dimensional category will be proved in the second section.

Theorem 2. Let G be a compact connected semisimple Lie group and T a maximal torus. Then

$$\pi_1 - \text{cat}_G T = \varphi(\pi_1 G) + 1.$$

1. The Lusternik-Schnirelmann category of G/G_X

Recall that the Lusternik-Schnirelmann category of a topological space M is the number $\text{cat} M$ equal to the least number of sets in an open finite covering of M with subsets contractible in M; if such a covering does not exist, take $\text{cat} M = \infty$. Both homotopical and differential aspects are concentrated in this notion; on the one hand, it is a homotopical invariant, and on the other hand, when M is a compact differentiable manifold, the number of critical points of a real function on M cannot be less than $\text{cat} M$.

Let us consider G a compact connected Lie group, $T \subseteq G$ a maximal torus and $t \subseteq \mathfrak{g}$ their Lie algebras.

Proposition 1. For any X belonging to \mathfrak{g}, the adjoint orbit $\text{Ad}_G X$ is simply connected. Equivalently the stabilizer G_X is connected.

Proof: Let $X_0 \in t$ be regular. Its orbit $\text{Ad} G X_0$ is a full isoparametric submanifold of \mathfrak{g}, with uniform multiplicity 2. The orbit foliation $\{\text{Ad} G X \mid X \in t\}$ is just the parallel foliation of $\text{Ad} G X_0$ on \mathfrak{g} (cf. [9, Example 6.5.6]). Since all multiplicities are greater than 1, by Theorem 5.7 of [8], any leaf $\text{Ad} G X$ is simply connected, and the proof is finished. \(\square\)

The following result is mentioned in A. Borel’s work [1]: the quotients of two locally isomorphic compact connected Lie groups G and G' by maximal tori T and T' are homeomorphic (see p. 188). We shall generalize it as follows:

Proposition 2. Let $p : \tilde{G} \to G$ be the universal group covering of the compact connected Lie group G of Lie algebra \mathfrak{g}, X an element of \mathfrak{g}, \tilde{G}_X and G_X the stabilizers of X. Then

(a) $p(\tilde{G}_X) = G_X$,

(b) the induced map $\varrho : \tilde{G}/\tilde{G}_X \to G/G_X$ is a homeomorphism.

Proof: (a) One can easily see that $p(\tilde{G}_X) \subseteq G_X$. It follows that $p \mid_{\tilde{G}_X} : \tilde{G}_X \to G_X$ is a local isomorphism and because G_X is connected, it is generated by $p(\tilde{G}_X)$. So $p(\tilde{G}_X) = G_X$.

(b) By the classical facts: \(\ker p \subseteq Z(\tilde{G}) \) (cf. \cite[Lemma 6, p. 195]{11}), \(Z(\tilde{G}) \subseteq T \) (cf. \cite[Theorem 2.3, Chapter IV]{3}) and \(T \subseteq \tilde{G}_X \), the injectivity of \(\varphi \) is clear. So \(\varphi \) is a homeomorphism. \(\square \)

Remark that the homogeneous space \(G/G_X \) depends only on \(g \) and \(X \), but not on the involved connected Lie group \(G \). This fact offers the possibility to deduce informations about the cohomology ring of \(G/G_X \) from Theorem III\'' of \cite{2}, even without the hypothesis \(G \) simply connected.

Proposition 3. Let \(G \) be a compact connected semisimple Lie group of Lie algebra \(g \) and \(X \) an element of \(G \). Then the ring \(H^*(G/G_X, \mathbb{Q}) \) is generated by 1 and \(H^2(G/G_X, \mathbb{Q}) \).

Notice that the above mentioned orbit \(G/G_X \) is of dimension \(n = \dim G - \text{rank } G - 2m \), where \(m \) is the number of hyperplanes of the infinitesimal diagram containing \(X \); it is also orientable (being simply connected) and so \(H^n(G/G_X, \mathbb{Q}) = \mathbb{Q} \). The \(\mathbb{Q} \)-cohomological length will be then cuplength \((G/G_X) \geq \frac{n}{2} \), and so \(\text{cat } (G/G_X) \geq \frac{n}{2} + 1 \).

On the other hand, \(G/G_X \) being simply connected, by Corollary 3.3 of \cite{7} one obtains \(\text{cat}(G/G_X) \leq \frac{n}{2} + 1 \).

In the end of the section, let us take for instance the homogeneous space of the form \(G/G_X \) from \cite{12} and calculate their Lusternik-Schnirelmann category \((n, n_1, \ldots, n_k)\) will be positive integers, \(\sum n_j = n \).

(a) The complex flag manifold \(W(n_1, \ldots, n_k) = U(n)/U(n_1) \times \cdots \times U(n_k) \) has the Lusternik-Schnirelmann category equal to \(\frac{1}{2}(n^2 - \sum j n_j^2) + 1 \). Consequently, for the complex Grassmann manifold \(G_{k,n} = U(n)/U(k) \times U(n-k) \), we have \(\text{cat } G_{k,n} = k(n-k) + 1 \).

(b) \(\text{cat } \text{SO}(2n)/U(n_1) \times \cdots \times U(n_k) = \frac{1}{2}[n(2n-1) - \sum n_j^2] + 1 \) and so the symmetric space \(\text{SO}(2n)/U(n) \) will have \(\text{cat } \text{SO}(2n)/U(n) = \frac{1}{2}n(n-1) + 1 \).

(c) \(\text{cat } \text{SO}(2n+1)/U(n_1) \times \cdots \times U(n_k) \times 1 = \frac{1}{2}[n(2n+1) - \sum n_j^2] + 1 \).

(d) \(\text{cat } \text{Sp}(n)/U(n_1) \times \cdots \times U(n_k) = \frac{1}{2}[n(2n+1) - \sum n_j^2] + 1 \).

The symmetric space \(\text{Sp}(n)/U(n) \) will have \(\text{cat } \text{Sp}(n)/U(n) = \frac{n(n+1)}{2} + 1 \).

2. The 1-dimensional category of \(T \) in \(G \)

By technical reasons, we prefer to transpose the general definition of \(A \)-category and some basic results concerning it (cf. \cite{4}) to the older 1-dimensional category (see \cite{6} or \cite{5}).

Denote by \(\mathcal{C}_1 \) the class of 1-connected CW-complexes. Define the **\(\mathcal{C}_1 \)-category** of a map \(f : N \to M \) to be the number \(\mathcal{C}_1 - \text{cat}(f) \), the smallest cardinality \(k \) of a finite numerable covering \(\{N_1, \ldots, N_k\} \) of \(N \) such that for each \(j = 1, \ldots, k \) the restriction \(f|N_j : N_j \to M \) factors through some space in \(\mathcal{C}_1 \) up to homotopy (i.e. there exist \(C_j \in \mathcal{C}_1 \) and maps \(\alpha_j : N_j \to C_j, \beta_j : C_j \to M \) such that \(\beta_j \alpha_j \)}
is homotopic to $f \mid_{N_j}$). For a subspace N of M, the relative **1-dimensional category** of N in M will be $\pi_1 - \text{cat}_M N = C_1 - \text{cat}(N \hookrightarrow M)$.

Let G be again a compact connected Lie group and $T \subseteq G$ a maximal torus. Consider the decomposition of $\pi_1 G$ as $\pi_1 G = \mathcal{F} \oplus_q \oplus_{\text{prime}} T_q$, where \mathcal{F} is the free part and T_q the subgroup of all order q^m ($m \geq 1$) elements; denote by $r = \text{rank} \mathcal{F}$, $r_q = \text{rank} T_q$. A classical result says that the inclusion $i : T \hookrightarrow G$ induces $i_\# : \pi_1 T \to \pi_1 G$ surjective. It then follows that $i^* : H^1(G, \mathbb{Z}_q) \to H^1(T, \mathbb{Z}_q)$ is injective, for any prime q. By the Hurewicz isomorphism, $H^1(G, \mathbb{Z}_q) \cong \text{Hom}(\pi_1 G, \mathbb{Z}_q)$ is isomorphic to a finite direct sum $\oplus \mathbb{Z}_q$ with $r + r_q$ terms. Since $H^*(T, \mathbb{Z}_q)$ is an exterior algebra, there exist in $H^1(G, \mathbb{Z}_q)$ a number of $r + r_q$ elements whose product does not go to zero under i^*. One can now use Proposition 3.1 of [4]: for any $C \in C_1$ and any $f : C \to G$, the map $f^* : H^1(G, \mathbb{Z}_q) \to H^1(C, \mathbb{Z}_q)$ is identically zero, and so

$$\pi_1 - \text{cat}_G T = C_1 - \text{cat}(T \hookrightarrow G) \geq r + r_q + 1.$$

But choosing q with r_q maximal, $r + r_q$ will be the minimal number of terms for a decomposition of $\pi_1 G$ in a direct sum of cyclic groups, the number that Singhof denotes by $\varphi(\pi_1 G)$. We have just proved:

Lemma 1. Let G be a compact connected Lie group and $T \subseteq G$ a maximal torus. Then $\pi_1 - \text{cat}_G T \geq \varphi(\pi_1 G) + 1$.

It remains to show that:

Lemma 2. Let G be a compact connected semisimple Lie group and $T \subseteq G$ a maximal torus. If $\pi_1 G$ admits a decomposition as a direct sum of k cyclic groups, then $\pi_1 - \text{cat}_G T \leq k + 1$.

The proof is based on the relation between the 1-dimensional and sectional categories (see Section 4 of [4] for the definition and basic properties concerning the sectional category).

Let \tilde{G} be the universal covering group of G. One can consider $G = \tilde{G}/C$, with $C \subseteq Z(\tilde{G})$ a finite central subgroup; moreover $\pi_1 G \cong C$ (cf. [3, Chapter V, Remark 7.13]). Any maximal torus of G is of the form \tilde{T}/C, \tilde{T} maximal torus in \tilde{G}.

The map $p : \tilde{G} \to G$ is C_1-universal (in the sense of [4]). Consequently $\pi_1 - \text{cat}_G \tilde{T}/C = \text{secat}(p')$, where $p' : U' \to \tilde{T}/C$ is the pullback over $i : \tilde{T}/C \hookrightarrow G$ of the Hurewicz fibration associated to p. Here $U' = \{(g, \alpha, tC) \in \tilde{G} \times \text{Top}(I, G) \times \tilde{T}/C \mid \alpha(0) = tC \}$ and $p'(g, \alpha, tC) = tC$. But considering $h : \tilde{T} \to U'$, $h(t) = (t, e_{tC}, tC)$, where e_{tC} is the constant loop in G, we have $\text{secat}(p'h) \leq \text{secat}(p'h)$ (notice that $g = p'h : \tilde{T} \to \tilde{T}/C$ is the natural map). Because C is a direct sum of k cyclic subgroups of \tilde{T}, one can find a torus \tilde{T}_C, embedded as a subgroup of \tilde{T}, $\dim \tilde{T}_C \leq k$. There also exist an another toral subgroup $\tilde{T}' \subseteq \tilde{T}$, $\tilde{T} = \tilde{T}_C \times \tilde{T}'$. It follows that $\tilde{T}/C = \tilde{T}_C/C \times \tilde{T}'$ and $g' \times 1_{\tilde{T}'} : \tilde{T}_C \times \tilde{T}' \to \tilde{T}_C/C \times \tilde{T}'$, where $g' : \tilde{T}_C \to \tilde{T}_C/C$ is the quotient map.
$g' : \tilde{T}_C \to \tilde{T}_C/C$ the natural map. Conclude by $\secat(g' \times 1_{\tilde{T}_C}) = \secat(g') \leq 1 + \dim \tilde{T}_C/C \leq k + 1$ (cf. [4, Corollary 4.7]).

REFERENCES

Faculty of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania

(Received April 4, 1996)