On linear functorial operators extending pseudometrics

T. Banakh, O. Pikhurko

Abstract. For a functor $F \supset Id$ on the category of metrizable compacta, we introduce a conception of a linear functorial operator $T = \{T_X : Pc(X) \to Pc(FX)\}$ extending (for each X) pseudometrics from X onto $FX \supset X$ (briefly LFOEP for F). The main result states that the functor SP^n_G of G-symmetric power admits a LFOEP if and only if the action of G on $\{1, \ldots, n\}$ has a one-point orbit. Since both the hyperspace functor exp and the probability measure functor P contain SP^2 as a subfunctor, this implies that both exp and P do not admit LFOEP.

Keywords: linear functorial operator extending (pseudo)metrics, the functor of G-symmetric power

Classification: 54B30, 54C20, 54E35

The results of this note are related to recent authors’ results [Ba] and [Pi] stating that every metrizable compact pair $X \subset Y$ admits a linear operator $T : Pc(X) \to Pc(Y)$ extending continuous pseudometrics from X onto Y. In the light of this result the question arises naturally: given a functor F putting in correspondence to each metrizable compactum X a space $FX \supset X$ is it possible for every X to define in some natural way a linear operator $T_X : Pc(X) \to Pc(FX)$ extending pseudometrics from X onto FX? This question is of interest because for many classical constructions such as the hyperspace functor exp or the functor P of probability measures all known operators extending (pseudo)metrics (e.g. the Hausdorff extension of metrics onto exp X or Kantorovich extension of metrics onto PX) are not linear. In this note we show that it is not occasionally and these functors do not admit any natural (or functorial) linear operator extending pseudometrics from X onto FX. This will be shown by proving that for $n > 1$ the symmetric power functor SP^n does not admit such a linear functorial extension operator, and noticing that both exp and P contain SP^2 as a subfunctor.

Now let us give precise definitions. For a topological space X by $Pc(X)$ the set of all continuous pseudometrics on X is denoted. The set $Pc(X)$ has the cone structure, i.e. given $t \in [0, \infty)$ and $p, p' \in Pc(X)$ we have $tp \in Pc(X)$ and $p + p' \in Pc(X)$.

This research was completed while the first author supported by a stipend of Austrian Ministry of Education and Research enjoyed the kind hospitality of TU-Wien. The second author was supported by an External Research Studentship, Trinity College, Cambridge.
Let X, Y be two topological spaces. We say that a map $T : P_c(X) \to P_c(Y)$ is a linear operator if for every $t \geq 0$ and $p, p' \in P_c(X)$ we have $T(tp) = tT(p)$ and $T(p+p') = T(p) + T(p')$. In case $X \subseteq Y$ we call $T : P_c(X) \to P_c(Y)$ an extension operator if for every $p \in P_c(X)$ the pseudometric T_p extends p. Notice that any continuous map $f : X \to Y$ induces a linear operator $f^* : P_c(Y) \to P_c(X)$ acting by $f^*(p) = p(f \times f)$ for $p \in P_c(Y)$.

By Top we denote the category of all topological spaces and their continuous maps and by $\mathcal{M}\text{Comp}$ its full subcategory consisting of all metrizable compacta. A natural transformation $\eta : F \to G$ between two functors $F, G : \mathcal{M}\text{Comp} \to \text{Top}$ is a family of morphisms (= continuous maps) $\eta = \{\eta_X : FX \to GX\}$ such that for every morphism $f : X \to Y$ in $\mathcal{M}\text{Comp}$ we get $Gf \circ \eta_X = \eta_Y \circ Ff$. A natural transformation $\eta = \{\eta_X\} : F \to G$ with all components η_X being embeddings is called an embedding of functors. This is denoted by $F \subset G$ and F is called a subfunctor of G. In this note we consider only functors F containing the identity functor Id as a subfunctor. Note that if F preserves one-point spaces then F admits at most one natural transformation $\eta : Id \to F$, see [Fe1] or [FF].

Now we introduce the conception of a functorial operator extending pseudometrics, the central conception in this paper. Let $F : \mathcal{M}\text{Comp} \to \text{Top}$ be a functor with $Id \subset F$. A collection $T = \{T_X : P_c(X) \to P_c(FX)\}$ of extension operators is called a functorial operator extending pseudometrics (briefly FOEP) for the functor F if for every morphism $f : X \to Y$ in $\mathcal{M}\text{Comp}$ the following diagram is commutative

$$
\begin{array}{ccc}
P_c(Y) & \xrightarrow{T_Y} & P_c(FY) \\
\downarrow{f^*} & & \downarrow{(Ff)^*} \\
P_c(X) & \xrightarrow{T_X} & P_c(FX).
\end{array}
$$

If, moreover, all T_X’s are linear operators, then $T = \{T_X\}$ is called a linear functorial operator extending pseudometrics (briefly LFOEP) for F.

Notice that the introduced conceptions are near to the notion of a metrizable functor [Fe2].

Classical examples of FOEP are the Hausdorff extension of (pseudo)metrics from a compactum X onto the hyperspace $\exp X$ of all non-empty compact sets in X and Kantorovich extension of (pseudo)metrics from X onto the space PX of probability measures on X, see [FF] or [Fe2]. These operators are not linear (and as we will see later they cannot be linear). An important example of a functor admitting a linear FOEP is the functor M putting in corresponding to a compactum X the space $M(X)$ of all Borel-measurable functions $[0, 1] \to X$ [BP]. A linear FOEP for the functor M can be defined by the formula

$$
T_X(d)(f, g) = \int_0^1 d(f(t), g(t)) \, dt, \quad \text{where } f, g \in M(X) \text{ and } d \in P_c(X).
$$

The functor $M(X)$ and defined above LFOEP play a crucial role in the construction of linear extension operators in [Za].
Therefore, the question is: which functors admit and which do not admit linear FOEP’s? It turns out that depends much on relationships between \(F \) and the functors \(SP^n_G \) of \(G \)-symmetric power which definitions we are going to recall now.

Let \(G \subset S_n \) be a subgroup of the symmetric group \(S_n \) (i.e. the group of all bijections of the set \(n = \{1, \ldots, n\} \)). For a compactum \(X \) let \(SP^n_G(X) \) be the quotient space of \(X^n \) with respect to the equivalence relation \(\sim: (x_1, \ldots, x_n) \sim (y_1, \ldots, y_n) \) iff \((x_1, \ldots, x_n) = (y_{\sigma(1)}, \ldots, y_{\sigma(n)}) \) for some \(\sigma \in G \). Further by \([x_1, \ldots, x_n] \in SP^n_G(X) \) the equivalence class of an element \((x_1, \ldots, x_n) \in X^n \) is denoted. It is easily seen that the construction of \(SP^n_G \) determines a functor on the category \(\text{MComp} \).

The principal result of this note is the following

Theorem. The functor \(SP^n_G \) admits a linear functorial operator extending pseudometrics if and only if the action of \(G \) on \(\{1, \ldots, n\} \) has a one-element orbit (i.e. \(G \cdot k = \{\sigma(k) \mid \sigma \in G\} = \{k\} \) for some \(k \in \{1, \ldots, n\} \)).

Applications of this theorem rely on the following simple

Proposition. Let \(F_1, F_2 : \text{MComp} \to \text{Top} \) be two functors such that each \(F_i \), \(i = 1, 2 \), preserves point and contains the identity functor \(\text{Id} \). If there is a natural transformation \(\varphi = \{\varphi_X\} : F_1 \to F_2 \) and the functor \(F_2 \) admits LFOEP then \(F_1 \) admits LFOEP either.

Proof: For \(i = 1, 2 \) denote by \(\eta_i : \text{Id} \to F_i \) the functorial embedding. Since \(F_i \) preserves point, the transformation \(\eta_i \) is unique. Hence \(\varphi \circ \eta_1 = \eta_2 \).

If \(T_2 = \{T_{2,X} : P_c(X) \to P_c(F_2X)\} \) is a LFOEP for \(F_2 \) then letting \(T_{1,X}(d) = T_{2,X}(d)(\varphi_X \times \varphi_X) \) for \(X \in \text{MComp} \) and \(d \in P_c(X) \), we obtain a LFOEP \(T_1 = \{T_{1,X}\} \) for \(F_1 \).

Since both functors \(\text{exp} \) and \(P \) contain the symmetric square functor \(SP^2 = SP^2_{S_2} \) as a subfunctor, Theorem and Proposition imply

Corollary. The functors \(\text{exp} \) and \(P \) on \(\text{MComp} \) do not admit any linear functorial operator extending pseudometrics.

Proof of Theorem

To prove the theorem we will need two simple lemmas first.

Lemma 1. Suppose for a finite space \(X = \{x_1, \ldots, x_m\} \) and reals \(a_{ij}, 1 \leq i < j \leq m \), the equality

\[
\sum_{i<j} a_{ij} d(x_i, x_j) = 0,
\]

holds for every metric \(d \) on \(X \). Then all \(a_{ij} \) are equal to 0.

Proof: Choose two different metrics on \(X, d_1 \) and \(d_2 \): in the first metric all distances between different points are equal to 1, the second is the same, except
the distance between x_i and x_j is equal to 2. Subtracting the corresponding equalities (1), we obtain $a_{ij} = 0$. □

Lemma 2. Any pseudometric d on a finite $X = \{x_1, \ldots, x_m\}$, $m > 2$, may be expressed as a linear combination of E_{ij} (E_{ij} is defined as a pseudometric on X gluing together points x_i and x_j, while all other non-zero distances are equal to 1), i.e. there exist real e_{ij} such that

\[d = \sum_{i<j} e_{ij}E_{ij}. \tag{2} \]

Proof: Evaluating both sides of (2) on the pair (x_k, x_l) we receive the following linear system of equations (in terms of e’s):

\[d(x_k, x_l) = \sum_{i<j} e_{ij}E_{ij}(x_k, x_l) = -e_{kl} + \sum_{i<j} e_{ij}. \tag{3} \]

Summing the above equality over all pairs (x_k, x_l) we have $\sum_{i<j} d(x_i, x_j) = (m^2-m-2)\sum_{i<j} e_{ij}$ and finally (taking into the account (3)):

\[e_{kl} = \frac{2\sum_{i<j} d(x_i, x_j)}{m^2 - m - 2} - d(x_k, x_l). \tag{4} \]

Proof of the Theorem: Suppose that there is a one-element orbit: for some $k \forall g \in G$ $g(k) = k$. We may define $T = (Pr_k)^*$, where $Pr_k : SP^n_G \to Id$ is natural transformation of functors, taking $[x_1, \ldots, x_n]$ to x_k. The explicit formula looks as (here and further on we omit sometimes subscripts for the clarity of language):

\[T(d)([x_1, \ldots, x_n], [y_1, \ldots, y_n]) = d(x_k, y_k). \]

The routine verification will show that so defined T is a desired LFOEP.

Conversely, suppose that such operator T exists and there is no stationary elements in n with respect to G. Consider some finite X, $|X| \geq 2n$ and calculate $T(d)$ on elements $[x_1, \ldots, x_n]$ and $[y_1, \ldots, y_n]$ where all x_i and y_i are different. Taking into the account (2) and (4) and using the linearity of T, we have:

\[T(d)([x_1, \ldots, x_n], [y_1, \ldots, y_n]) = \sum_{i<j} e_{ij}T(E_{ij})([x_1, \ldots, x_n], [y_1, \ldots, y_n]) \]

\[= \sum_{i,j} a_{ij}d(x_i, y_j) + \sum_{i<j} b_{ij}d(x_i, x_j) + \sum_{i<j} c_{ij}d(y_i, y_j) \tag{5} \]

for some real constant a_{ij}, b_{ij}, c_{ij}. Note, that is general all coefficients e_{ij} are not necessarily nonnegative, but formula (5) still holds. Really, if for pseudometrics
d_1 and d_2 the function $d_1 - d_2$ (pointwise subtraction) is a pseudometric, then $T(d_1) = T(d_2 + (d_1 - d_2)) = T(d_2) + T(d_1 - d_2)$, so $T(d_1 - d_2) = T(d_1) - T(d_2)$, for any linear T.

From functoriality of T we can read that formula (5) is true for all X, d and distinct $x_i, y_i \in X$: just consider embeddings of some fixed space with $2n$ points mapping it onto $\{x_1, \ldots, x_n, y_1, \ldots y_n\}$. It must be true for all (not necessarily distinct) x_i, y_i as $T(d)$ is continuous function on X^2: take appropriate connected metric space, and consider limits of both sides of (5) when some of x’s and y’s approach each other.

Now, $T(d)$ as a pseudometric is symmetric. So, swap y and x in (5) and compare. We obtain:

$$
\sum_{i<j} d(x_i, x_j)(b_{ij} - c_{ij}) + \sum_{i<j} d(y_i, y_j)(c_{ij} - b_{ij}) + \sum_{i,j} d(x_i, y_j)(a_{ij} - a_{ji}) = 0
$$

and, according to Lemma 1,

$$
b_{ij} = c_{ij} \text{ and } a_{ij} = a_{ji}.
$$

Next, $T(d)([x_1, \ldots, x_n], [x_1, \ldots, x_n]) = 0$. After simple transformations we obtain: $\sum_{i<j} d(x_i, x_j)(a_{ij} + a_{ji} + b_{ij} + c_{ij}) = 0$. Therefore (applying (6)):

$$
a_{ij} = a_{ji} = -b_{ij} = -c_{ij}.
$$

Suppose that we have $g \in G$ which moves k to l. Then, the two elements $[x, \ldots, x, z, x, \ldots, x]$ with one z at k-th and l-th positions respectively are equivalent, and therefore, for every $[y_1, \ldots, y_n]$ formula (5) should yield the same values. After routine transformations we obtain: $\sum_i d(z, y_i)(a_{ki} - a_{li}) + (\text{other terms}) = 0$. Therefore for all i $a_{ki} = a_{li}$. So, assuming (6) $a_{ij} = a_{kl}$, if i and k are G-related and j and l are G-related. The same is true for b’s and c’s.

If we have a 2-element orbit (let it be $\{1, 2\}$) then consider the following three points $[x, x, z, \ldots, z]$, $[y, y, z, \ldots, z]$ and $[x, y, z, \ldots, z]$ and use all that we know about the coefficients:

$$
T(d)([x, x, z, \ldots, z], [y, y, z, \ldots, z]) = 4a_{11}d(x, y),
$$

$$
T(d)([x, x, z, \ldots, z], [x, y, z, \ldots, z]) = a_{11}d(x, y),
$$

$$
T(d)([x, y, z, \ldots, z], [y, y, z, \ldots, z]) = a_{11}d(x, y).
$$

To satisfy the triangular inequality we must put $a_{11} = 0$.

If we have a k-element ($k > 2$) orbit (let it be $\{1, \ldots, k\}$) then consider the following two points in $SP^n_G(X)$: $[x_1, \ldots, x_k, z, \ldots, z]$ and $[y_1, \ldots, y_k, z, \ldots, z]$ with following original distances in X: all nonzero distances are 1 except $d(x_i, y_j) = 2$, all i, j. Calculate:

$$
T(d)([x_1, \ldots, x_k, z, \ldots, z], [y_1, \ldots, y_k, z, \ldots, z]) = (2k - k^2)a_{11}.
$$
Since, $2k - k^2 < 0$ when $k > 2$, $a_{11} \leq 0$.

So, if all orbits are non-degenerated then for all i $a_{ii} \leq 0$. Finally, let us for some x, y with $d(x, y) > 0$ find:

$$d(x, y) = T(d)([x, \ldots, x], [y, \ldots, y]) = \sum_i a_{ii}d(x, y) \leq 0.$$

Contradiction. \hfill \Box

References

