Whitney blocks in the hyperspace of a finite graph

ALEJANDRO ILLANES*

Abstract. Let X be a finite graph. Let $C(X)$ be the hyperspace of all nonempty sub-continua of X and let $\mu : C(X) \to \mathbb{R}$ be a Whitney map. We prove that there exist numbers $0 < T_0 < T_1 < T_2 < \cdots < T_M = \mu(X)$ such that if $T \in (T_{i-1}, T_i)$, then the Whitney block $\mu^{-1}(T_{i-1}, T_i)$ is homeomorphic to the product $\mu^{-1}(T) \times (T_{i-1}, T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.

Keywords: hyperspaces, Whitney levels, Whitney blocks, finite graphs

Classification: 54B20

Introduction

Throughout this paper X denotes a finite graph, i.e. a compact connected metric space which is the union of finitely many segments joined by their end points. A segment of X is one of those segments. A subgraph of X is a graph contained in X formed by some of those segments. Let $SG(X) = \{ A \subset X : A$ is a subgraph of $X \}$.

The hyperspace of subcontinua of X is $C(X) = \{ A \subset X : A$ is a nonempty, closed, connected subset of $X \}$ metrized with the Hausdorff metric. Let $F_1(X) = \{ \{x\} \in C(X) : x \in X \}$. A map is a continuous function. A Whitney map for $C(X)$ (see [8, 0.50]) is a map $\mu : C(X) \to \mathbb{R}$ such that $\mu(\{x\}) = 0$ for every $x \in X$, $\mu(A) < \mu(B)$ if $A \subset B \neq A$ and $\mu(X) = 1$. A Whitney level is a set of the form $\mu^{-1}(t)$, where $t \in [0, 1]$. A Whitney block is a set of the form $\mu^{-1}(t, s)$, where $0 \leq t < s \leq 1$. From now on, μ will denote a Whitney map for $C(X)$.

In [1], R. Duda made a detailed study of the polyhedral structure of $C(X)$ by giving a good decomposition of $C(X)$ into balls. In [2], he gave a characterization of those polyhedra which are hyperspaces of acyclic finite graphs.

Whitney levels of finite graph have been studied by H. Kato. In [4] he showed that they are always polyhedra and that if $t_0 = \min\{ \mu(A) : A$ is a simple closed curve contained in $X \}$ and $0 \leq t < t_0$, then $\mu^{-1}(t)$ is homotopically equivalent to X. In [4] and [6] he gave bounds for the fundamental dimension of Whitney levels of finite graphs and, in [5] he proved that Whitney levels of finite graphs admit all homotopy types of compact connected ANRs.

This paper was motivated by the following result of I. Puga ([10, Theorem 2.5]): “There exists $t \in [0, 1)$ and there exists a homeomorphism $\varphi : (\text{Cone over} \ \mu^{-1}(t))$
\[\rightarrow \mu^{-1}(t, 1) \text{ such that } \varphi(A, 0) = A, \varphi(A, 1) = X \text{ and } s < t \text{ implies that } \varphi(A, s) \subset \varphi(A, t) \text{ for each } A \in \mu^{-1}(t). \]

She expressed this property by saying that the hyperspace of subcontinua of a finite graph is conical pointed.

In this paper, we prove:

Theorem 1. Suppose that \(\mu(SG(X)) \cup \{0\} = \{T_0, T_1, \ldots, T_M\} \), where \(0 = T_0 < T_1 < \cdots < T_M = 1 \). If \(1 \leq i \leq M \) and \(T \in (T_{i-1}, T_i) \), then there exists a homeomorphism \(\varphi : \mu^{-1}(T) \times (T_{i-1}, T_i) \rightarrow \mu^{-1}(T_{i-1}, T_i) \) such that \(\varphi(A, T) = A \) and \(\varphi(A, s) \subset \varphi(A, t) \) if \(s < t \) for every \(A \in \mu^{-1}(T) \) and, for each \(t \in (T_{i-1}, T_i) \), \(\varphi|\mu^{-1}(T) \times \{t\} \) is a homeomorphism from \(\mu^{-1}(T) \times \{t\} \) onto \(\mu^{-1}(t) \).

Theorem 2. There is only a finite number of topologically different Whitney levels for \(C(X) \).

1. **Preliminaries**

The vertices of \(X \) are the end points of the segments of \(X \). Notice that the set \(SG(X) \) of subgraphs of \(X \) depends on the choice of the segments. We are interested in having as less subgraphs as possible, so we will suppose that \(X \) is not a simple closed curve and each vertex of \(X \) is either an end point of \(X \) or a ramification point of \(X \). With this restriction two extremes of a segment of \(X \) may coincide and then such a “segment” would be a simple closed curve. The set of segments of \(X \) is denoted by \(S \). For each \(J \in S \), we fix an orientation and then we identify \(J \) with a closed interval \([(−1)J, (1)J] \). Notice that it is possible that \((−1)J = (1)J \). We write \(-1\) (resp. \(1\)) instead of \((−1)J\) (resp. \((1)J\)) if no confusion arrives.

In order to define the map \(\varphi \) in Theorem 1, we will describe its action in each \(J \in S \). For each \(A \in \mu^{-1}(T) \), we consider \(A \cap J \) and we enlarge or shrink this set. To illustrate how this shrinking of \(A \cap J \) has to be done, let us consider the following diagram:
Here, L and M are segments of X and J is a segment in X such that the end points of J coincide (that is, J is a simple closed curve). The subcontinua A_1, A_2 and A_3 have been outlined in thicker lines. The subcontinuum A_2 contains J and M and one half of L, $A_1 \cap L$ and $A_3 \cap L$ are a little bit larger that $A_2 \cap L$ while $A_1 \cap J$ and $A_3 \cap J$ are a little bit smaller than $A_2 \cap J$. In this example, $T_{i-1} = \mu(J \cup M)$.

If we shrink $A_2 \cap J$, then we have to cut it at some place of the circle J. Since A_1 is very close to A_2, the continuity of the shrinking implies that we have to cut $A_1 \cap J$ at a similar position as $A_2 \cap J$. Then, the connectedness of the shrinking of $A_1 \cap J$ implies that $A_2 \cap J$ has to be cut only on the upper part of J. But, since A_3 is very close to A_2, in the same way as above, $A_2 \cap J$ has to be cut only on the lower part of J. This contradiction shows that it is not possible to shrink $A_2 \cap J$.

However, we have to shrink the continuum A_2 and the shrinkings have to take all the sizes in the interval $(T_{i-1}, \mu(A_2)]$. Then, the shrinking of A_2 will be carried out by making the arc $A_2 \cap L$ shorter and shorter. Since A_1 and A_3 are very close to A_2, then the shrinking of $A_1 \cap J$ and $A_3 \cap J$ have to be almost imperceptible compared with the shrinking of $A_1 \cap L$ and $A_3 \cap L$, respectively.

The map φ in Theorem 1 will be an appropriate reparametrization and restriction of the following map F, so the behaviour of F will be similar to the behaviour of φ and the discussion concerning the shrinking of the subcontinua of X is applicable to F.
Observing that to get the effect of shrinking some intervals very slowly compared with others, we strongly use the asymptoteness of the graph of the map g to the lines $y = \pm 1$ in the Euclidean plane.

2. Auxiliary maps

Consider the map $f : (-1, 1) \to \mathbb{R}$ given by $f(t) = \tan(t\pi/2)$ and let $g : \mathbb{R} \to (-1, 1)$ be the inverse map of f. Then $f(t) = -f(t)$ for every $t \in (-1, 1)$, $g(-s) = -g(s)$ for every $s \in \mathbb{R}$ and $-g$ is the inverse map of $-f$. Define $C^\vee(X) = C(X) - (SG(X) \cup F_1(X))$.

Define $F : C^\vee(X) \times \mathbb{R} \to C^\vee(X)$ by $F(A, t) = \bigcup \{F_j(A, t) : J \in S\}$, where $F_j : C^\vee(X) \times \mathbb{R} \to \{E : E$ is a closed subset of $J\}$ is defined as follows:

$$F_j(A, t) = \begin{cases}
(a) & A \cap J \quad \text{if} \quad A \cap J = \emptyset, \{-1\}, \{1\}, \{-1, 1\} \quad \text{or} \quad J, \\
(b) & [-1, g(f(b) + t)) \quad \text{if} \quad A \cap J = [-1, b] \quad \text{and} \quad -1 < b < 1, \\
(c) & [g(f(a) - t), 1) \quad \text{if} \quad A \cap J = [a, 1] \quad \text{and} \quad -1 < a < 1, \\
(d) & [a + e(m - a), b + e(m - b)] \quad \text{where} \quad m = \frac{a + b}{2 + a - b} \quad \text{and} \quad e = 1 + \frac{1 + g(f(b - a - 1 + t))}{a - b}, \quad \text{if} \quad A \cap J = [a, b] \quad \text{and} \quad -1 < a < b < 1 \quad \text{and}, \\
(e) & [-1, a + e(m - a)] \cup [b + e(m - b), 1],
\quad \text{where} \quad m = \frac{a + b}{2 + a - b} \quad \text{and} \quad e = 1 + \frac{1 + g(f(b - a - 1 - t))}{a - b}, \quad \text{if} \quad A \cap J = [-1, a] \cup [b, 1], \\
& \quad -1 < a < b < 1 \quad \text{and} \quad -1 < a \quad \text{or} \quad b < 1.
\end{cases}$$

In case (e), $a(1 + a) \leq b(1 + a)$ and $a(1 - b) \leq b(1 - b)$, then $2a + a^2 - ab \leq a + b \leq 2b + ab - b^2$, so $a \leq m \leq b$, where $a < m$ or $b < m$. Notice that e is a strictly increasing function of t. If $t \to \infty$, $e \to 1$, $a + e(m - a) \to m$ and $b + e(m - b) \to m$. If $t \to -\infty$, $e \to 1 + \frac{2}{a - b} a + e(m - a) \to -1$ and $b + e(m - b) \to 1$. Thus $F_j(A, t)$ is a proper subset of J, $\{-1, 1\} \subset F_j(A, t) \neq \{-1, 1\}$; if $t < s$, then $F_j(A, t) \subset F_j(A, s) \neq F_j(A, t)$, $F_j(A, t) \to J$ as $t \to \infty$ and $F_j(A, t) \to \{-1, 1\}$ as $t \to -\infty$.

Similarly, in case (d), $F_j(A, t)$ is a proper subset of J, $-1, 1 \not\in F_j(A, t)$, $m \in F_j(A, t)$; if $t < s$, then $F_j(A, t) \subset F_j(A, s) \neq F_j(A, t)$, $F_j(A, t) \to J$ as $t \to \infty$ and $F_j(A, t) \to \{m\}$ as $t \to -\infty$.

In all the cases, if $A \cap J$ is a nonempty proper subset of J, then $F_j(A, t)$ is a nonempty proper subset of J. Moreover, -1 (resp. 1) belongs to A if and only if -1 (resp. 1) belongs to $F_j(A, t)$. It follows that, for each t, a vertex p of X belongs to A if and only if p belongs to $F(A, t)$ and $F(A, t) \in C^\vee(X)$. Therefore F is well defined.

We will need the following properties of function F:
II. For a fixed $t < s$, then $F(A, t) \subset F(A, s) \neq F(A, t)$.
It follows from the fact that in cases (b), (c), (d) and (e), if $t < s$, then $F_J(A, t) \subset F_J(A, s) \neq F_J(A, t)$.

II. For a fixed $A \in C^\gamma(X)$, if $t \to -\infty$, $F(A, t)$ tends to a one-point set or to a subgraph of X which is contained in A and, if $t \to \infty$, then $F(A, t)$ tends to a subgraph of X which contains A.

III. F is continuous.

Let $((A_n, t_n))n$ be a sequence in $C^\gamma(X) \times \mathbb{R}$ which converges to an element (A, t) in $C^\gamma(X) \times \mathbb{R}$. We may suppose that if $J \in \mathcal{S}$ and $A \cap J = \emptyset$, then $A_n \cap J = \emptyset$ for every n. Let $S^* = \{J \in \mathcal{S} : A \cap J \neq \emptyset\}$. Since $F(A, t)$ has no isolated points, if we can find a finite set E such that $F(A_n, t_n) \cup E \to F(A, t)$, then we will have that $F(A_n, t_n) \to F(A, t)$. In order to find such a set E, it is enough to show that, for each $J \in S^*$, there exists a finite set E_J such that $F_J(A_n, t_n) \cup E_J \to F_J(A, t)$. Then take $J \in S^*$. Here it is necessary to consider the following cases:

1. $A \cap J = J$,
2. $A \cap J = [-1, b]$ with $-1 < b < 1$,
3. $A \cap J = [a, 1]$ with $-1 < a < 1$,
4. $A \cap J = [a, b]$ with $-1 < a < b < 1$,
5. $A \cap J = [-1, a] \cup [b, 1]$ with $-1 < a < b < 1$,
6. $A \cap J = [1, a] \cup [b, 1]$ with $1 < a < 1$,
7. $A \cap J = \{-1\}$ or $A \cap J = \{1\}$.
8. $A \cap J = \{-1, 1\}$.

We only check cases 1 and 6; the others are similar. For case 1, the sequence $(A_n)n$ can be partitioned into subsequences $(B_k)k$ where each B_k lies in one of the following subcases:

(a) $B_k \cap J = J$. Then $F_J(B_k, t_{n_k}) = J \to F_J(A, t)$.

(b) $B_k \cap J = [-1, b_k]$ with $-1 < b_k < 1$. Since $B_k \to A$, $b_k \to 1$, then $F_J(B_k, t_{n_k}) = [-1, g(f(b_k) + t_{n_k})] \to [-1, 1] = F_J(A, t)$.

(c) $B_k \cap J = [a_k, 1]$ with $-1 < a_k < 1$. It is similar to (b).

(d) $B_k \cap J = [a_k, b_k]$ with $-1 < a_k < b_k < 1$. Then $a_k \to -1$ and $b_k \to 1$, so $e_k = 1 + [1 + g(f(b_k - a_k - 1) + t_{n_k})]/(a_k - b_k) \to 0$. Thus $b_k + e_k(m_k - b_k) - (a_k + e_k(m_k - a_k)) = (b_k - a_k)(1 - e_k) \to 2$. Therefore

$$F_J(B_k, t_{n_k}) = [a_k + e_k(m_k - a_k), b_k + e_k(m_k - b_k)] \to [-1, 1] = F_J(A, t).$$

(e) $B_k \cap J = [-1, a_k] \cup [b_k, 1]$, with $-1 < a_k < b_k < 1$ and $-1 < a_k$ or $b_k < 1$. Then $b_k - a_k \to 0$. Thus $b_k + e_k(m_k - b_k) - (a_k + e_k(m_k - a_k)) = (b_k - a_k)(1 - e_k) = (b_k - a_k)(1 + g(f(b_k - a_k - 1) + t_{n_k})/(a_k - b_k)) \to 0$.

Thus $F_J(B_k, t_{n_k}) \to F_J(A, t)$.

Therefore $F_J(A_n, t_n) \to F_J(A, t)$.

In case 6, define $E_J = \{1\}$. Note that $F_J(A, t) = [-1, g(f(a) + t)] \cup \{1\}$. We must consider the following subcases:

(a) $B_k \cap J = [-1, b_k]$ with $-1 < b_k < 1$. Since $B_k \to A$, $b_k \to a$, then
A. Illanes

This contradiction shows that this case is not possible.

Since \(a \) and \(r \)
\[m_k = (a_k + b_k)/(2 + a_k - b_k) \rightarrow -1 \] and \(e_k \rightarrow 1 + [1 + g(f(a) + t)]/(-1 - a) \). Thus \(F_J(B_k, t_{n_k}) \cup E_J = [a_k + e_k(m_k - a_k), b_k + e_k(m_k - b_k)] \cup E_J = [-1, g(f(a) + t)] \cup \{1\} = F_J(A, t) \).

(c) \(B_k \cap J = [-1, a_k] \cup [b_k, 1] \), with \(-1 \leq a_k < b_k \leq 1\) and \(-1 < a_k \) or \(b_k < 1\). Then \(a_k \rightarrow a \), \(b_k \rightarrow 1 \), \(m_k \rightarrow 1 \) and \(e_k \rightarrow (a - g(f(a) + t))/(a - 1) \). Thus, \(F_J(B_k, t_{n_k}) \cup E_J = [-1, a_k + e_k(m_k - a_k)] \cup [b_k + e_k(m_k - b_k), 1] \rightarrow [-1, g(f(a) + t)] \cup \{1\} = F_J(A, t) \).

Hence, \(F_J(A_n, t_n) \cup E_J \rightarrow F_J(A, t) \).

Therefore, \(F \) is continuous.

IV. If \((A, t), (B, s) \in C^\infty(X) \times \mathbb{R}\) are such that \(A - B \neq \emptyset \) and \(F(A, t) = F(B, s) \), then \(t < s \).

To prove this, choose a point \(p \in A - B \), let \(J \in S \) be such that \(p \in J \). If \(p \) is a vertex of \(X \), then \(p \in F(A, t) = F(B, s) \), so \(p \in B \). This contradiction proves that \(p \) is not a vertex of \(X \). Then \(J \) is the unique segment of \(X \) which contains \(p \).

We consider some cases:

(a) \(A \cap J = J \). Then \(J \subset F(B, s) \). This implies that \(B \cap J = J \) and \(p \in B \). This contradiction shows that this case is not possible.

(b) \(A \cap J = [-1, b] \) with \(-1 < b < 1\). Since \(F(A, t) = F(B, s) \), then \(B \cap J \) is of the form \(B \cap J = [-1, b_1] \) with \(-1 < b_1 < b \) and \([-1, g(f(b) + t)] = [-1, g(f(b_1) + s)] \). Then \(f(b) + t = f(b_1) + s \). Thus \(t < s \).

(c) \(A \cap J = [a, 1] \) with \(-1 < a < 1\). This case is similar to case (b).

(d) \(A \cap J = [-1, a] \cup [b, 1] \) with \(-1 \leq a < b \leq 1\) and \(-1 < a \) or \(b < 1\).

Since \(F(A, t) = F(B, s) \), then \(B \cap J \) is of the form \(B \cap J = [-1, a_1] \cup [b_1, 1] \), with \(-1 \leq a_1 < b_1 \leq 1\) and \(-1 < a_1 \) or \(b_1 < 1\). Moreover, \(a + e(m - a) = a_1 + e_1(m_1 - a_1) \) \(b + e(m - b) = b_1 + e_1(m_1 - b_1) \) \(m = (a + b)/(2 + a - b) \), \(m_1 = (a_1 + b_1)/(2 + a_1 - b_1) \), \(e - 1 = (1 + g(f(b - a - 1) - t))/(a - b) \) and \(e_1 - 1 = (1 + g(f(b_1 - a_1 - 1) - s))/(a_1 - b_1) \).

From (1) and (2), \((1 - e)a - (1 - e_1)a_1 = (1 - e)b - (1 - e_1)b_1 \), then \((1 - e)(a - b) = (1 - e_1)(a_1 - b_1) \) \(e_1 = 1 + r/(a_1 - b_1) \). So, (1) and (2) imply: \(m + r(m - a)/(a - b) = m_1 + r(m_1 - a_1)/(a_1 - b_1) \) and \(m + r(m - b)/(a - b) = m_1 + r(m_1 - b_1)/(a_1 - b_1) \).

Using definitions of \(m \) and \(m_1 \), \(m - r(1 + a)/(2 + a - b) = m_1 - r(1 + a)/(2 + a - b) \) and \(m + r(1 - b)/(2 + a - b) = m_1 + r(1 - b)/(2 + a - b) \).

Then \(m - m_1 = r[(1 + a)/(2 + a - b) - (1 + a)/(2 + a_1 - b_1)] \). Hence \(m - m_1 = r(a - a_1 + b_1 - a_1 b_1 + b_1 a)/(2 + a - b)(2 + a_1 - b_1) \). While, from definitions of \(m \) and \(m_1 \), \(m - m_1 = 2(a - a_1 + b - b_1 - a_1 b - a b_1)/(2 + a - b)(2 + a_1 - b_1) \).

Since \(r < 2 \), \((a - a_1 + b - b_1 - a_1 b - a b_1)/(2 + a - b)(2 + a_1 - b_1) = 0 \). Therefore \(m = m_1 \).
From (6) we have \((1+a)/(2+a-b) = (1+a_1)/(2+a_1-b_1)\) and \((1-b)/(2+a-b) = (1-b_1)/(2+a_1-b_1)\). Since \(p \in (A \cap J) - (B \cap J)\), then \(a_1 < a\) or \(b < b_1\). In the first case, \(1+a_1 < 1+a\), so \(2+a-b > 2+a_1-b_1\) and \(f(b-a-1) < f(b_1-a_1-1)\), then (5) implies \(t < s\). Analogously, in the second case, \(t < s\).

(e) \(A \cap J = [a, b]\) with \(-1 < a < b < 1\). This case is similar to case (d). Then \(t < s\).

This completes the proof of Property IV.

Define \(G : C^\vee(X) \times \mathbb{R} \to C^\vee(X)\) by \(G(B, t) = \bigcup \{G_J(B, t) : J \in \mathcal{S}\}\), where \(G_J : C^\vee(X) \times \mathbb{R} \to \{E : E\) is a closed subset of \(J\}\) is defined as follows:

\[
G_J(B, t) = \begin{cases}
(a) & B \cap J = \emptyset, \{-1\}, \{1\}, \{-1, 1\} \text{ or } J, \\
(b) & [-1, g(f(b) - t)] \text{ if } B \cap J = [-1, b] \text{ and } -1 < b < 1, \\
(c) & [g(f(a) + t), 1] \text{ if } B \cap J = [a, 1] \text{ and } -1 < a < 1, \\
(d) & [(a-e'm)/(1-e''), (b-e'm)/(1-e'')] \text{ where } m = \frac{a+b}{2+a-b}, \\
& \text{and } e' = 1 - \frac{b-a}{1+g(t-f(\frac{a-b-1}{t}))} \text{ if } B \cap J = [-1, a] \cup [b, 1], -1 \leq a < b \leq 1 \text{ and } -1 < a \text{ or } b < 1.
\end{cases}
\]

In case (e), let \(a_1 = (a-e'm)/(1-e'')\) and \(b_1 = (b-e'm)/(1-e'')\), then \(a_1 < b_1\). Note that \(e'\) is an increasing continuous function of \(t\). If \(t \to -\infty, e' \to (2+a-b)/2, \) if \(t \to -\infty, e' \to -\infty. \) Then \(e' < (2+a-b)/2 \) for every \(t \in \mathbb{R}\). Thus \(e'(1+m) = e'2(1+a)/(2+a-b) \leq 1+a\) and \(e'(1-m) = e'2(1)-b/(2+a-b) \leq 1-b. \) This implies that \(-1 \leq (a-e'm)/(1-e'') = a_1\) (equality holds if and only if \(-1 = a\) and \(b_1 = (b-e'm)/(1-e'') \leq 1\) (equality holds if and only if \(b = 1\)).

If \(t \to \infty, a_1 \to -1\) and \(b_1 \to 1. \) If \(t \to -\infty, a_1 \to m\) and \(b_1 \to m. \) Since \(a+b-2e'm = m(2+a-b-2e'), \) \(m = (a-e'm+b-e'm)/(2(1-e') + a-b) = (a_1+b_1)/(2+a_1-b_1). \) Therefore \(m = \frac{a_1+b_1}{2+a_1-b_1}. \) Define \(e = 1 + \frac{1+g(f(b_1-a_1-1)+t)}{a_1+b_1}. \) Note that \(b_1 - a_1 - 1 = (b-a - (1-e'))/(1-e'') = -g(-t-f(b-a-1)).\) This implies that \(e = e'.\) Thus \(a_1 + e(m-a_1) = a\) and \(b_1 + e(m-b_1) = b. \)

Therefore, \(G_J(B, t)\) is a continuous function of \(t, G_J(B, t) \to J \to -\infty, \) \(G_J(B, t) \to \{-1, 1\} \) as \(t \to -\infty, \) \(G_J(B, 0) = B \cap J\) and supposing that \(G(B, t) \in C^\vee(X),\) we have that \(F_J(G(B, t), t) = [-1, a] \cup [b, 1] = B \cap J\) for every \(t \in \mathbb{R}.

The analysis of cases (a), (b), (c) and (d) is similar and we conclude that \(G(B, t) \in C^\vee(X)\) for each \(t \in \mathbb{R}, \) \(F_J(G(B, t), t) = B \cap J\) for every \(t \in \mathbb{R},\) then \(F(G(B, t), t) = B\) for every \(t \in \mathbb{R}, \) \(G(B, t)\) depends continuously on \(t, G(B, t)\) tends to one-point set or to a subgraph of \(X\) which is contained in \(B\) as \(t \to \infty\) and \(G(B, t)\) tends to a subgraph of \(X\) which contains \(B\) as \(t \to -\infty.\)
3. Proof of Theorem 1

Define $\mathcal{A} = \mu^{-1}(\mathbb{T}) \subset C^\prime(X)$ and $\mathcal{B} = \mu^{-1}(T_i-1, T_i)$. For each $A \in \mathcal{A}$, let $r(A) = \inf\{t \in \mathbb{R} : F(A, t) \in \mathcal{B}\}$ and $R(A) = \sup\{t \in \mathbb{R} : F(A, t) \in \mathcal{B}\}$. Since $F_J(A, 0) = A \cap J$ for every $J \in \mathcal{S}$, we have that $F(A, 0) = A \in \mathcal{B}$ for each $A \in \mathcal{A}$. Then $r(A)$ and $R(A)$ are defined and $-\infty \leq r(A) < 0 < R(A) \leq \infty$. Let $\mathcal{C} = \{(A, t) \in \mathcal{A} \times \mathbb{R} : r(A) < t < R(A)\}$. We will prove that the function $F_0 = F | \mathcal{C}$ is a homeomorphism from \mathcal{C} onto \mathcal{B}.

Property I implies that $F_0(A, t) \in \mathcal{B}$ for every $(A, t) \in \mathcal{C}$. In order to prove that F_0 is injective, suppose that $F_0(A, t) = F_0(B, s)$. If $A \neq B$, since $\mu(A) = \mu(B)$, then $A - B \neq \emptyset$ and $B - A \neq \emptyset$. Property IV implies that $t < s$ and $s < t$. This contradiction implies that $A = B$. Thus, by Property I, $(A, t) = (B, s)$. Therefore F_0 is injective. To prove that F_0 is onto, let $B \in \mathcal{B} \subset C^\prime(X)$. Since $G(B, t)$ tends to one-point set or to a subgraph of X which is contained in \mathcal{B} as $t \to \infty$ and $G(B, t)$ tends to a subgraph of X which contains B as $t \to -\infty$. Then $\lim_{t \to -\infty} \mu(G(B, t)) \leq T_i-1$ and $\lim_{t \to -\infty} \mu(G(B, t)) \geq T_i$. Thus there exists $t \in \mathbb{R}$ such that $A = G(B, t) \in \mathcal{A}$. The continuity of F implies that $r(A) < t < R(A)$. Then $F_0(A, t) = B$. Therefore F_0 is surjective.

Let $K : \mathcal{B} \to \mathcal{C}$ be the inverse function of F_0. We will show that K is continuous. It is enough to prove that if $(B_n)n$ is a sequence in \mathcal{B} which is convergent to an element $B \in \mathcal{B}$ and the sequence $(K(B_n))n$ converges to an element $(A_0, t_0) \in \mathcal{A} \times [-\infty, \infty]$, then $(A_0, t_0) = K(B)$.

Let $(A, t) = K(B)$ and, for each n, let $(A_n, t_n) = K(B_n)$. Then $(A_n, t_n) \to (A_0, t_0)$. If $r(A_0) < t_0 < R(A_0)$, then $F_0(A, t) = B = \lim_{n \to \infty} B_n = \lim_{n \to \infty} F_0(A_n, t_n) = F_0(A_0, t_0)$, so $(A_0, t_0) = K(B)$. If $t_0 \leq r(A_0)$, take a number $t^* > r(A_0)$. Then there exists N such that $t_n < t^*$ for each $n \geq N$. Then $B_n \subset F(A_n, t_n) \subset F(A_n, t^*)$ for each $n \geq N$. Thus $B \subset F(A_0, t^*)$ for every $t^* > r(A_0)$. If $r(A_0) > -\infty$, then $B \subset F(A_0, r(A_0)) \subset F(A_0, 0) = A_0$. Thus $T_i-1 < \mu(B) \leq \mu(F(A_0, r(A_0))) \leq \mu(A_0) < T_i$. Then there exists $r < r(A_0)$ such that $T_i-1 < \mu(F(A_0, r)) < T_i$ which is a contradiction with the definition of $r(A_0)$. If $r(A_0) = -\infty$, then $B \subset \lim_{n \to \infty} F(A_0, -n)$ which is a subgraph of X or a one-point set contained in A_0. Thus $\mu(B) \leq T_i-1$ which is a contradiction. Similar contradictions are obtained supposing that $t_0 \geq R(A_0)$. This completes the proof that $(A_0, t_0) = K(B)$. Therefore K is continuous.

Hence F is a homeomorphism.

In order to define φ, let $g_1 : \mathcal{A} \times \mathbb{R} \to \mathcal{A}$ and $g_2 : \mathcal{A} \times \mathbb{R} \to \mathbb{R}$ be the respective projection maps. Define $\psi : \mathcal{B} \to \mathcal{A} \times (T_i-1, T_i)$ by $\psi(B) = (g_1(K(B)), \mu(B))$. Then ψ is continuous.

Let $(A, t) \in \mathcal{A} \times (T_i-1, T_i)$. Since $F(A, n)$ converges to a subgraph of X which contains A, then $\lim_{n \to \infty} \mu(F(A, n)) \geq T_i$. Thus there exists $n_1 > 1$ such that $\mu(F(A, n_1)) > t$. Similarly, there exists $n_2 > 1$ such that $\mu(F(A, -n_2)) < t$. Hence there exists a unique $s \in \mathbb{R}$ such that $\mu(F(A, s)) = t$. Define $\varphi(A, t) = F(A, s)$.

Property I implies that if $t_1 < t_2$, then $\varphi(A, t_1) \subset \varphi(A, t_2)$. Note that
\[\psi(\varphi(A,t)) = \psi(F(A,s)) = (A,t). \] Since \(\mu(F(\varphi_1(K(B)), \varphi_2(K(B)))) = \mu(B), \) then \(\varphi(\psi(B)) = \psi((\varphi_1(K(B)), \varphi_2(K(B)))) = F(K(B)) = B. \) Then \(\psi \) is the inverse map of \(\varphi. \) Since \(\mu(F(A,0)) = \mu(A) = T, \) then \(\varphi(A,T) = A \) for every \(A \in \mathcal{A}. \)

To prove that \(\varphi \) is continuous, it is enough to prove that if \((A_n, t_n)\) is a sequence in \(\mathcal{A} \times (T_{i-1}, T_i) \) which converges to an element \((A,t)\) in \(\mathcal{A} \times (T_{i-1}, T_i) \) and \(\varphi(A_n, t_n) \) converges to an element \(B \in C(X) \), then \(B = \varphi(A,t). \) Set \(\varphi(A_n, t_n) = F(A_n, s_n), \) where \(\mu(F(A_n, s_n)) = t_n \) and set \(\varphi(A, t) = F(A, s) \) where \(\mu(F(A, s)) = t. \) Then \(t_n = \mu(\varphi(A_n, t_n)) \rightarrow \mu(B), \) so \(\mu(B) = t \in (T_{i-1}, T_i). \) Thus \(B \in \mathcal{B}. \) Set \(K(B) = (A^*, r). \) Then \((A^*, r) = \lim_{n \to \infty} K(\varphi(A_n, t_n)) = \lim_{n \to \infty} K(F(A_n, s_n)) = \lim_{n \to \infty} F(A_n, s_n) \) Thus \(A_n \rightarrow A^* \) and \(s_n \rightarrow r. \) Hence \(A^* = A. \) Since \(t_n = \mu(F(A_n, s_n)) \rightarrow \mu(F(A, r)), \) then \(t = \mu(F(A, r)). \) Hence \(B = \varphi(A,t). \)

This completes the proof that \(\varphi \) is a homeomorphism and the proof of Theorem 1.

\[\square \]

Corollary ([10, Theorem 2.5]). \(C(X) \) is conical pointed. That is, for each Whitney map \(\mu : C(X) \rightarrow \mathbb{R} \) there exists \(T \in (0, 1) \) such that \(\mu^{-1}([T, 1]) \) is homeomorphic to the topological cone of \(\mu^{-1}(T). \)

4. Proof of Theorem 2

Definition. Let \(\mathcal{A} \) and \(\mathcal{B} \) be two Whitney levels for \(C(X) \) and let \(C \in C(X). \) We say that \(C \) is placed between \(\mathcal{A} \) and \(\mathcal{B} \) if there exists \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \) such that \(A \subset C \subset B \neq A \) or \(B \subset C \subset A \neq B. \)

Theorem. Let \(\mathcal{A} \) and \(\mathcal{B} \) be two Whitney levels. Suppose that no element in \(SG(X) \cup F_1(X) \) is placed between \(\mathcal{A} \) and \(\mathcal{B}. \) Then \(\mathcal{A} \) and \(\mathcal{B} \) are homeomorphic.

Proof: Set \(\mathcal{A} = \mu^{-1}(t) \) and \(\mathcal{B} = \nu^{-1}(s) \) where \(\mu, \nu : C(X) \rightarrow \mathbb{R} \) are Whitney maps and \(t, s \in [0, 1]. \) Let \(A \in \mathcal{A} - \mathcal{B} \), we will prove that there exists a unique \(r \in \mathbb{R} \) such that \(\nu(F(A, r)) = s. \) If \(\nu(A) < s, \) taking an order arc from \(A \) to \(X \) (see [8, Theorem 1.8]), there exists \(B_0 \in \mathcal{B} \) such that \(A \subset B_0 \neq A, \) then \(A \notin SG(X) \cup F_1(X). \) Therefore \(A \in C^\vee(X). \) Let \(D = \lim_{n \to \infty} F(A, n). \) Then \(D \) is a subgraph of \(X \) which contains \(A. \) If \(\nu(D) \leq s, \) there exists \(B \in \mathcal{B} \) such that \(D \subset B. \) Then \(\nu(A) < \nu(B) \) and \(A \subset D \subset B \neq A \) which contradicts our assumption. Thus \(\nu(D) > s. \) Then \(\nu(F(A, 0)) = \nu(A) < s = \lim_{n \to \infty} \nu(F(A, n)). \) This proves the existence of \(r \) in this case. The case \(\nu(A) > s \) is similar. In both cases \(r \) is unique by Property I.

Analogously, for each \(B \in \mathcal{B} - \mathcal{A}, \) \(B \in C^\vee(X) \) and there exists a \(z \in \mathbb{R} \) such that \(\mu(G(B, z)) = t. \)

Define \(\gamma : \mathcal{A} \rightarrow \mathcal{B} \) by \(\gamma(A) = A \) if \(A \in \mathcal{A} \cap \mathcal{B} \) and \(\gamma(A) = F(A, r) \in \mathcal{B} \) if \(A \in \mathcal{A} - \mathcal{B}. \)

Note that \(A \subset \gamma(A) \) or \(\gamma(A) \subset A. \) To prove that \(\gamma \) is surjective, let \(B \in \mathcal{B}. \) If \(B \in \mathcal{A}, \) then \(B = \gamma(B). \) If \(B \in \mathcal{B} - \mathcal{A}, \) let \(z \in \mathbb{R} \) be such that \(\mu(G(B, z)) = t. \)
Then $F(G(B, z), z) = B$ and $G(B, z) \in A$. Thus $\gamma(G(B, z)) = B$. Hence γ is surjective. To prove that γ is injective, let $A_1, A_2 \in A$ with $A_1 \neq A_2$. If $A_1, A_2 \in B$, then $\gamma(A_1) = A_1 \neq A_2 = \gamma(A_2)$. If $A_1 \in B$ and $A_2 \notin B$, then $A_2 \subset A_1$ or $\gamma(A_2) \subset A_2$ $\neq \gamma(A_2)$, so $\gamma(A_2) \notin A$, and $\gamma(A_2) \neq A_1 = \gamma(A_1)$. If $A_1, A_2 \notin B$, since $A_1 - A_2 \neq \emptyset$ and $A_2 - A_1 \neq \emptyset$, Property IV implies that $F(A_1, r_1) \neq F(A_2, r_2)$ for every $r_1, r_2 \in \mathbb{R}$. Hence $\gamma(A_1) \neq \gamma(A_2)$. Therefore γ is injective.

Finally, we will prove that γ is continuous. It is enough to prove that if $(A_n)_n$ is a sequence in A which converges to an element $A \in A$ and $\gamma(A_n) \rightharpoonup B \in B$, then $\varphi(A) = B$. We may suppose that $A_n \in B$ for each n or $A_n \notin B$ for each n. The first case is immediate. In the second case, set $\gamma(A_n) = F(A_n, r_n)$. We consider two subcases:

(a) $A \in A - B$, set $\gamma(A) = F(A, r)$. We suppose, for example, that $r \leq r_n$ for each n. Then $F(A_n, r) \subset F(A_n, r_n) = \gamma(A_n)$, then $\gamma(A) = F(A, r) = \lim_{n \to \infty} F(A_n, r) \subset \lim_{n \to \infty} \gamma(A_n) = B$. Since $\gamma(A), B \in B$, we have that $\gamma(A) = B$.

(b) $A \in B$. Since $A_n \subset \gamma(A_n)$ or $\gamma(A_n) \subset A_n$ for every n, then $A \subset B$ or $B \subset A$ and $A, B \in B$. Thus $A = B$. This completes the proof that γ is continuous.

Therefore γ is a homeomorphism.

Proof of Theorem 2: Let $\mathcal{A} = \{ A \subset C(X) : A$ is a Whitney level for $C(X), A \neq F_1(X) \text{ and } A \neq \{ X \} \}$. Let $\mathcal{P} = \{ E : E \subset SG(X) \}$. Then \mathcal{P} is finite.

Define $\sigma : \mathcal{A} \to \mathcal{P} \times \mathcal{P} \times \mathcal{P}$ by:

\[\sigma(A) = \{ \{ E \in SG(X) : \text{there exists } A \in A \text{ such that } E \subset A \neq E \}, SG(X) \cap A, \{ E \in SG(X) : \text{there exists } A \in A \text{ such that } A \subset E \neq A \} \}. \]

In order to prove Theorem 2, it is enough to show that if $\sigma(A) = \sigma(B)$, then A is homeomorphic to B.

Suppose then that $\sigma(A) = \sigma(B)$. By the previous theorem, it is enough to prove that no element in $SG(X)$ is placed between A and B. Suppose, for example, that there exists $A \in A, B \in B$ and $E_0 \in SG(X)$ such that $A \subset E_0 \subset B \neq A$. If $A = E_0$, then $E_0 \in SG(X) \cap A = SG(X) \cap B \subset B$, so $E_0, B \in B$ and $E_0 \subset B \neq E_0$ which is a contradiction. If $A \neq E_0$, $F(A) = F(B)$ implies that there exists $B_1 \in B$ such that $B_1 \subset E_0 \neq B_1$. Thus $B_1 \subset B \neq B_1$ which is also a contradiction.

Therefore A is homeomorphic to B.

References

Centro de Investigación en Matemáticas, A.C. (CIMAT), Apdo. 402, Guanajuato 36000, Guanajuato, México

Permanent address:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F. 04510

(Received April 6, 1993, revised September 4, 1994)