On uniformly smoothing stochastic operators

WOJCIECH BARTOSZEK

Abstract. We show that a stochastic operator acting on the Banach lattice \(L^1(m) \) of all \(m \)-integrable functions on \((X, A)\) is quasi-compact if and only if it is uniformly smoothing (see the definition below).

Keywords: stochastic operators, quasi-compact
Classification: Primary 47A35; Secondary 47B55, 47D07

Let \((X, A, m)\) be a \(\sigma \)-finite measure space. By \(\mathcal{D} \) we denote the set of all densities from \(L^1(m) \), i.e. \(m \) integrable positive functions \(f \) such that \(\int_X f \, dm = 1 \).

A linear operator \(P: L^1(m) \to L^1(m) \) is said to be stochastic if \(P(\mathcal{D}) \subseteq \mathcal{D} \).

Stochastic operators have broad applications. The reader may find appropriate references in [LM]. Among other properties, usually the asymptotic behaviour of the iterates \(P^n \) is studied. In the middle of the eighties Komornik and Lasota introduced to the theory of stochastic operators the concept of smoothness. Namely, \(P \) is said to be smoothing if

there exist a set \(F \in \mathcal{A} \) of finite measure and

\[
\lim_{n \to \infty} \int_{E \cup F^c} P^n f \, dm \leq \eta,
\]

where \(F^c \) stands here and in the sequel for the complementation \(X \setminus F \).

Smoothing stochastic operators have nice asymptotic properties. It is proved in [KL] that any smoothing stochastic operator \(P \) is asymptotically periodic i.e. there exist pairwise orthogonal densities \(g_1, \ldots, g_r \), positive functionals \(\Lambda_1, \ldots, \Lambda_r \) and a permutation \(\alpha \) of the set \(\{1, \ldots, r\} \) such that \(\lim_{n \to \infty} \| P^n f - \sum_{i=1}^r \Lambda_i(f) g_{\alpha^n(i)} \| = 0 \) and \(P g_i = g_{\alpha(i)} \) \(\quad i = 1, 2, \ldots, r \). In particular, for some constant \(d \) the sequence \(P^{nd} \) converges in the strong operator topology to \(\sum_{i=1}^r \Lambda_i \otimes g_i \). The most general result in this direction was finally obtained by Komornik. Namely, it was

I thank the Foundation for Research Development for financial support.
proved in [K] that any power bounded positive, and linear operator on $L^1(m)$ is asymptotically periodic.

In this note we discuss the uniform version of (S). Following [B3] (see Problem 3, page 57) we adapt here:

Definition. Let $0 < \eta < 1$. A stochastic operator P is said to be uniformly η-smoothing if there are $F \in \mathcal{A}$ with $m(F) < \infty$, and a constant $0 < \delta$ such that for some natural n_0

$$(US-\eta) \quad \sup_{f \in \mathcal{D}} \int_{E \cup F^c} P^{n_0} f \, dm \leq \eta$$

for all $E \in \mathcal{A}$ satisfying $m(E) \leq \delta$.

We will show that operators satisfying $(US-\eta)$, are quasi-compact. Let us recall that an operator P is quasi-compact if $\|P^n - K\| < 1$ for some compact operator K and natural n. It is known (see for instance [B2]) that quasi-compact stochastic operators P are exactly those which satisfy $\|P^{nd} - \sum_{i=1}^{r} \Lambda_i \otimes g_i\| \xrightarrow{n \to \infty} 0$, for suitable d, r, Λ_i, and g_i. We will exploit here the characterization of quasi-compact operators obtained in [B1]. In particular we shall apply some of the results from the mentioned paper to Markov operators acting on the Banach lattice $C(\Delta)$ of all continuous functions on Δ, where Δ stands for the set of all linear and multiplicative functionals on $L^\infty(m)$ equipped with the \ast-weak topology, so Hausdorff and compact. We recall that a linear operator $T: C(\Delta) \to C(\Delta)$ is Markov if $T1 = 1$ and $Tf \geq 0$ for $f \geq 0$. The dual space to $C(\Delta)$ is identified with Radon, finite (signed) measures on Δ. The \ast-weak compact (nonempty) set of all probability measures μ on Δ such that $T^* \mu = \mu$ is denoted by $P_T(\Delta)$. Clearly the adjoint to P operator $T = P^*$ is markovian.

A linear operator R acting on a Banach space \mathcal{X} is said to be strongly ergodic if for all $x \in X$ the Cesaro means $n^{-1}(I + R + \cdots + R^{n-1})x$ are convergent in the norm of \mathcal{X}. Sine’s mean ergodic theorem (see [S]) provides necessary and sufficient conditions for strong ergodicity. Namely, it holds if and only if R-invariant vectors separate R^*-invariant ones. It is easy to verify that R^*-invariant vectors always separate R-invariant ones. In [B1] it is proved that a Markov operator T on $C(\Delta)$ is quasi-compact if T^* is strongly ergodic and the topological support $S(\mu)$ of any μ from $P_T(\Delta)$ is non-meager. Finally we notice that the quasi-compactness of P is equivalent to the quasi-compactness of its adjoint P^*.

Theorem. Let P be a stochastic operator on $L^1(m)$. Then P is quasi-compact if and only if P is η-uniformly smoothing for some (for all) $0 < \eta < 1$.

Proof: Assume that P is η-uniformly smoothing with F, n_0, η, δ as in $(US-\eta)$, and let $X = \bigcup_{j=1}^{\infty} X_j$ where X_j are pairwise disjoint with positive finite measure.
We assume that \(X_1 = F \). Now let us define a probability measure
\[
m_0 = \sum_{j=1}^{\infty} t_j m|_{X_j} \quad \text{where} \quad \sum_{j=1}^{\infty} t_j m(X_j) = 1, \quad \text{and} \quad t_j > 0.
\]

Clearly \(m_0 \) and \(m \) are equivalent, so \(L^\infty(m_0) = L^\infty(m) \). The measure \(m_0 \) may be transported on \(\Delta \) by the Gelfand transform \(\hat{\cdot} \). Then, for any \(f \in L^\infty \) we have
\[
\int_X f \, dm_0 = \int_{\Delta} \hat{f} \, d\hat{m}_0
\]
where \(\hat{f} \in C(\Delta) \) is the image of \(f \) by \(\hat{\cdot} \). By \(\sim \) let us denote the inverse operation to \(\hat{\cdot} \).

First we show that measures from \(P_T(\Delta) \) are absolutely continuous with respect to \(\hat{m}_0 \). Since \(T^* L^1(\hat{m}_0) \subseteq L^1(\hat{m}_0) \), it is sufficient to show that any \(\hat{\nu} \in P_T(\Delta) \) has a nonzero absolutely continuous with respect to \(\hat{m}_0 \) component. If not, let us suppose that for some \(\hat{\nu} \in P_T(\Delta) \) one has \(\hat{\nu} \perp \hat{m}_0 \). Then there exists a clopen set \(\hat{U} \subseteq \Delta \) so that
\[
(\star) \quad \hat{m}_0(\hat{U}) < t_1 \delta \quad \text{with} \quad \hat{\nu}(\hat{U}) = 1.
\]

Let \(\hat{f} \in C(\Delta) \) be such that \(\int \hat{f} d\hat{m}_0 = 1 \) and \(T^{*n_0}(\hat{\nu})(\hat{U}) > \frac{1}{2} + \frac{\eta}{2} \). We get
\[
\int_{\hat{U}} P_{n_0} \frac{d(\hat{f} \, d\hat{m}_0)}{dm} > \frac{1}{2} + \frac{\eta}{2} > \eta. \quad \text{This implies} \quad m(U \cap F) > \delta, \quad \text{so} \quad m_0(U \cap F) > t_1 \delta,
\]
and finally contradicting (**) we get \(\hat{m}_0(\hat{U}) \geq \hat{m}_0(\hat{U} \cap \hat{F}) > t_1 \delta \). Therefore \(P_T(\Delta) \subseteq L^1(\hat{m}_0) \), which easily implies that the topological support of \(\nu \in P_T(\Delta) \) is non-meager.

Applying Sine’s mean ergodic from [S] we notice that the operator \(T \) is strongly ergodic. In particular, \(A^*_n \nu = n^{-1}(I^* + T^* + \cdots + T^{*(n-1)}) \nu \) is \(* \)-weak convergent. Since \(\Delta \) has the Grothendieck property (\(* \)-weak convergent sequences from \(C(\Delta)^* \) are weakly convergent) thus \(A^*_n \nu \) is weakly convergent. But weakly convergent Cesaro means are norm convergent. Therefore, \(T^* \) is strongly ergodic. Using results of [B1] we easily obtain quasi-compactness of \(T = P^* \). By Theorem 2 from [B2], there is a natural \(d \) such that \(P^* n d \) is convergent in the operator norm to a finite dimensional projection. This is equivalent to the norm convergence of \(P n d \), and \(P \) is quasi-compact.

To prove the opposite let us assume that a stochastic operator \(P \) is quasi-compact. For some \(d \) we have \(\lim_{n \to \infty} P n d = \sum r_{\Lambda_i} \otimes g_i \), where \(g_i \in D \) are pairwise orthogonal (i.e. \(g_i \cdot g_j = 0 \quad m \text{ a.e. for } i \neq j \)) and \(\Lambda_i(f) = \int f \, h_i \, dm \) where \(\| h_i \|_* \leq 1 \). For a given \(0 < \eta < 1 \) we choose a set \(F \in \mathcal{A} \) of finite measure...
and positive δ that if $m(E) < \delta$ then $\int_{E \cup F^c} \sum_{j=1}^{r} g_j dm < \frac{\eta}{2}$. If n is such that

$$\|P^{nd} - \sum_{j=1}^{r} \Lambda_j \otimes g_j\| < \frac{\eta}{2},$$

then we have

$$\int_{E \cup F^c} P^{nd} f \, dm = \int_{E \cup F^c} \left(P^n f - \sum_{j=1}^{r} \lambda_j(f) g_j \right) \, dm + \sum_{j=1}^{r} \lambda_j(f) \int_{E \cup F^c} g_j \, dm$$

$$\leq \frac{\eta}{2} + \int_{E \cup F^c} \sum_{j=1}^{r} g_j \, dm \leq \eta$$

where f is an arbitrary density. \square

References

Department of Mathematics, University of South Africa, P.O. Box 392, Pretoria 0001, South Africa

E-mail: bartowk@risc5.unisa.ac.za

(Received August 29, 1994)