A σ-porous set need not be σ-bilaterally porous

J. NÁJARES R., L. ZAJÍČEK*

Abstract. A closed subset of the real line which is right porous but is not σ-left-porous is constructed.

Keywords: sigma-porous, sigma-bilaterally-porous, right porous

Classification: Primary 26A99; Secondary 28A5

1. Introduction

Let $E \subseteq \mathbb{R}$ be a set, and let I be an interval. Then we denote by $\lambda(E, I)$ the length of the largest open subinterval of I which does not intersect E. The right porosity of E at $x \in \mathbb{R}$ is defined as

$$p^+(E, x) = \lim_{h \to 0^+} \frac{\lambda(E, (x, x+h))}{h}.$$

The left porosity $p^-(E, x)$ is defined by the symmetrical way.

We say that:

(i) E is right porous at x if $p^+(E, x) > 0$,
(ii) E is left porous at x if $p^-(E, x) > 0$,
(iii) E is bilaterally porous at x if it is porous both on the right and on the left at x.

The set E is said to be right (left, bilaterally) porous if it is right (left, bilaterally) porous at each of its points and σ-right-porous (σ-left-porous, σ-bilaterally-porous) if it is a countable union of right (left, bilaterally) porous sets. It is easy to see that a set is σ-bilaterally porous iff it is bilaterally σ-porous (i.e. it is both σ-right-porous and σ-left-porous). The main aim of the present article is to prove the following result.

Theorem. There exists a closed set $F \subset \mathbb{R}$ which is right porous but is not σ-left-porous.

We obtain the example slightly modifying the ideas of [F] and [Za 1].

We essentially use Lemma 5 which is a special case of the generalized Foran lemma [Za 3], which enables us to give a simple proof that our set F is not

*Supported by Research Grant GAUK 363.
σ-left-porous. Another ingredient of our proof is Proposition, which is analogous to Proposition 4.4 from [Za 2]. We believe that it can be also of some independent importance. Note that for symmetrical porosity an analogical proposition does not hold [E-H-S].

2. Proposition and lemmas

Definition 1. If \(c > 0 \), \(M \subset \mathbb{R} \) and \(r > 0 \) are given, then we define

\[
S(c, r, M) = \bigcup \{ x \ominus (y - \sigma, y) ; y \in \mathbb{R}, \ 0 < \sigma < r, (y - \sigma, y) \cap M = \emptyset \},
\]

where \(c \ominus (y - \sigma, y) = (y - c\sigma, y) \).

We shall need the following lemmas which are obvious.

Lemma 1. If \(p^+(M, x) \geq c > 0 \), then \(x \in \bigcap \{ S(\frac{2}{c}, r, M) ; r > 0 \} \).

Lemma 2. If \(c > 1 \), \(x \in M \) and \(x \in \bigcap \{ S(c, r, M) ; r > 0 \} \), then \(p^+(M, x) \geq \frac{1}{c} \).

Proposition. Let \(A \) be a \(\sigma \)-right-porous set (\(\sigma \)-left-porous) and \(c < 1 \). Then there exists a sequence \(\{ A_n \}_{n=1}^\infty \) such that \(A = \bigcup_{n=1}^\infty A_n \) and \(p^+(A_n, x) \geq c \) (\(p^-(A_n, x) \geq c \), respectively) for any \(n \in \mathbb{N} \) and \(x \in A_n \).

Proof: It is sufficient to give the proof for right porosity only. By definition \(A = \bigcup_{n=1}^\infty B_n \) where \(B_n \) is a right porous set for any \(n \in \mathbb{N} \). Putting

\[
B_{n,k} = \{ x \in B_n ; p^+(B_n, x) \geq \frac{1}{k} \}
\]

we have that \(A = \bigcup_{n,k=1}^\infty B_{n,k} \) and

\[
p^+(B_{n,k}, x) \geq \frac{1}{k}
\]

for any \(x \in B_{n,k} \).

Thus it is sufficient to prove the following statement:

If \(M \subset \mathbb{R} \), \(a > 0 \) and, for each \(x \in M \), the inequality \(p^+(M, x) \geq a \) holds, then \(M = \bigcap_{i=1}^\infty M_i \), where \(p^+(M_i, y) \geq c \) for any \(y \in M_i \).

We can suppose \(a < c < 1 \), the case \(a \geq c \) being trivial. Choose \(n \in \mathbb{N} \) such that \((\frac{1}{c})^n \geq \frac{2}{a} \) and define \(C_k = M \cap \bigcap_{r>0} S(c^{-k}, r, M) \). By Lemma 1 \(M = C_n \) and therefore \(M = \bigcup_{k=2}^n (C_k \setminus C_{k-1}) \cup C_1 \). By Lemma 2, we have \(p^+(C_1, x) \geq c \) for any \(x \in C_1 \).

For \(k = 2, \ldots, n \) define \(T_{k,m} = C_k \setminus S(c^{-k+1}, m^{-1}, M) \). Then

\[
\bigcup_{m=1}^\infty T_{k,m} = C_k \setminus \bigcap_{m=1}^\infty S(c^{-k+1}, m^{-1}, M) = C_k \setminus C_{k-1}.
\]

Since \(T_{k,m} \subset C_k \), for each \(z \in T_{k,m} \) and \(r > 0 \), there exist \(y \) and \(t \) such that \(0 < t < \min(r, m^{-1}) \), \((y-t, y) \cap M = \emptyset \) and \(z \in c^{-k} \ominus (y-t, y) \). Put \(J = c^{-k+1} \ominus (y-t, y) \). Then \(z \in c^{-1} \ominus J \) and \(J \cap T_{k,m} = \emptyset \), since \(J \subset S(c^{-k+1}, m^{-1}, M) \).
Thus, for each \(z \in T_{k,m} \), we have \(z \in \bigcap_{r>0} S(c^{-1}, c^{-k+1}r, T_{k,m}) \) and therefore \(p^+(T_{k,m}, z) \geq c \) by Lemma 2, which proves our statement. \(\square \)

For the sake of brevity, in the following we shall say that \(E \) is \(V \)-porous at \(x \) if \(p^-(E, x) > \frac{100}{101} \). The following lemma is easy to prove.

Lemma 3. Let \(E \subset \mathbb{R} \), \(x \in \mathbb{R} \) and a natural number \(p \) be given such that \(x - 10^{-k} \) or \(x - 10^{-(k+1)} \) belongs to \(E \) for each natural \(k > p \). Then \(E \) is not \(V \)-porous at \(x \).

The following lemma is an immediate consequence of Proposition.

Lemma 4. A set \(E \subset \mathbb{R} \) is \(\sigma \)-left-porous iff it is \(\sigma \)-\(V \)-porous.

Definition 2. Let \(\mathcal{F} \subset \exp \mathbb{R} \) be a non-\(\sigma \)-\(V \)-porosity family if the following conditions hold:

(a) \(\mathcal{F} \) is a nonempty family of nonempty closed sets,

(b) for each \(F \in \mathcal{F} \) and each open set \(G \subset \mathbb{R} \) with \(F \cap G \neq \emptyset \), there exists \(F^* \in \mathcal{F} \) such that \(\emptyset \neq F^* \cap G \subset F \cap G \) and \(F \) is \(V \)-porous at no point of \(F^* \cap G \).

We shall need the following lemma which is a special case of [Za 3, Lemma 4.3].

Lemma 5. Let \(\mathcal{F} \) be a non-\(\sigma \)-\(V \)-porosity family. Then no set from \(\mathcal{F} \) is \(\sigma \)-\(V \)-porous.

3. Proof of theorem

Our theorem stated in Introduction immediately follows from Lemma 7 and Lemma 8 below. To formulate them, we need some notions.

Definition 3. Let \(x \in (0, 1) \). As usual, we write \(x = 0, a_1a_2... \) if \(x = \sum_{i=1}^{\infty} a_i10^{-i} \) and \(a_i \in \{0, 1, ..., 9\} \). The uniqueness of the expansion is obtained using terminating 0’s whenever \(x \) has two expansions. Let \(a \in \{0, 1, ..., 9\} \) be a digit. The density and the upper density of \(a \) in the expansion of \(x \) are defined as

\[
\begin{align*}
d(a, x) &= \lim_{n \to \infty} \frac{\# \{k; 1 \leq k \leq n, a_k(x) = a \}}{n}, \\
\bar{d}(a, x) &= \lim_{n \to \infty} \frac{\# \{k; 1 \leq k \leq n, a_k(x) = a \}}{n}.
\end{align*}
\]

The following easy fact is well known and easy to prove.

Lemma 6. The function \(x \mapsto \bar{d}(a, x) \) is Borel measurable on \((0, 1)\).
Let a natural number N, $\varepsilon > 0$, $1 > \alpha > 0$ and digits $a_1, \ldots, a_{N^2} \in \{0, 1, \ldots, 9\}$ be given. Then we define the set $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ as the set of all $x \in (0, 1)$ for which

(1) \[a_1(x) = a_1, \ldots, a_{N^2}(x) = a_{N^2} \quad \text{and} \]

(2) \[1 - \frac{\varepsilon}{n^\alpha} \leq \frac{c(x, n)}{2n + 1} < 1 \quad \text{whenever} \quad n \geq N. \]

Lemma 7. Let $0 < \alpha < 1$, $\varepsilon > 0$ and digits $a_1, \ldots, a_{N^2} \in \{0, 1, \ldots, 9\}$ such that

(3) \[N > \max \left((1 + \varepsilon)^{1/\alpha}, \varepsilon^{1/\alpha-1} \right) \]

be given.

Then $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ is a closed set which is not σ-left-porous.

Proof: Obviously (2) implies that

(4) \[c(x, n) \neq 0 \quad \text{whenever} \quad n \geq N \quad \text{and} \quad x \in A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon). \]

Now suppose that $x_n \in A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ and $x_n \to x$. On account of (4) we easily obtain that

\[(a_1(x_n), a_2(x_n), \ldots) \to (a_1(x), a_2(x), \ldots) \]

in the space $\mathbb{N}^\mathbb{N}$ and consequently $x \in A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$. Thus we have that $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ is closed.

The condition (2) is equivalent to

\[c(x, n) \in \left[(1 - \frac{\varepsilon}{n^\alpha})(2n + 1), \ 2n + 1 \right] := I_n \quad \text{for} \quad n \geq N. \]

If $n \geq N$, we have by (3)

\[(1 - \frac{\varepsilon}{n^\alpha})(2n + 1) > (1 - \frac{\varepsilon}{1 + \varepsilon})(2(1 + \varepsilon)^{\frac{1}{\alpha}}) > 2 \quad \text{and} \]

\[(2n + 1) - (1 - \frac{\varepsilon}{n^\alpha})(2n + 1) = \frac{\varepsilon}{n^\alpha}(2n + 1) > 2\varepsilon n^{1-\alpha} > 2. \]

Thus we have $I_n \subset (2, 2n + 1)$ and $\text{length}(I_n) > 2$ for $n \geq N$; consequently $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon) \neq \emptyset$ and $c(x, n) > 2$ whenever $x \in A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ and $n \geq N$.

Now let \mathcal{F} denote the family of all sets of the form $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ for which (3) holds. By Lemma 4 and Lemma 5 it is sufficient to prove that \mathcal{F} is a non-σ-V-porosity family. To this end suppose that $F = A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon) \in \mathcal{F}$ and an open set $G \subset \mathbb{R}$ such that $F \cap G \neq \emptyset$ are given.
Choose an arbitrary \(y \in F \cap G \) and find a natural \(M \) so large that

\[
M > N, \quad M > \left(\frac{\varepsilon}{2} \right)^{\frac{1}{\alpha}} \quad \text{and} \quad F^* := A(\alpha, a_1, \ldots, a_{N^2}, a_{N^2+1}(y), \ldots, a_{M^2}(y), \frac{1}{2}\varepsilon) \subset G.
\]

Clearly \(F^* \subset F \). On account of (3) and (5) we have

\[M > \max \left((1 + \frac{\varepsilon}{2})^\frac{1}{\alpha}, (\frac{\varepsilon}{2})^\frac{1}{\alpha-1} \right) \]

and therefore \(F^* \in F \). Thus it is sufficient to prove that \(F \) is \(V \)-porous at no point \(z \in F^* \). To prove this, fix an arbitrary \(z \in F^* \) and consider an arbitrary natural \(k > (M + 1)^2 \). By Lemma 3 it is sufficient to prove that at least one of the points \(z_k^- = z - 10^{-k} \), \(z_{k+1}^- = z - 10^{-(k+1)} \) belongs to \(F \). It is easy to see that

\[
c(z, n) - 1 \leq c(z_k^-, n) \quad \text{and} \quad c(z, n) - 1 \leq c(z_{k+1}^-, n), \quad \text{for each} \quad n.
\]

Since \(z \in F^* \), we have \(c(z, M) > 0 \) (we know even \(c(z, M) > 2 \)) and therefore

\[
a_s(z) = a_s(z_k^-) = a_s(z_{k+1}^-) \quad \text{for} \quad s \leq M^2.
\]

Now suppose that \(x \in \{z_k^-, z_{k+1}^-\} \). Then (7) says that

\[a_s(x) = a_s(z) \quad \text{for} \quad s \leq M^2. \]

For \(n \geq M \) the definition of \(F^* \), (6) and (5) yield

\[
\frac{c(x, n)}{2n+1} \geq \frac{c(z, n) - 1}{2n+1} \geq 1 - \frac{\varepsilon}{2n^\alpha} - \frac{1}{2n+1} > 1 - \frac{\varepsilon}{n^\alpha}.
\]

Thus it is sufficient to establish that, for \(x = z_k^- \) or \(x = z_{k+1}^- \),

\[
e(x, n) \neq 0, \quad \text{for each} \quad n \geq M.
\]

To this end suppose that

\[e(z_k^-, n) = 0 \quad \text{for some} \quad n \geq M. \]

Since \(c(z, n) \neq 0 \), this condition easily implies that

\[
k = n^2 + i \quad \text{where} \quad i \in \{1, \ldots, 2n\},
\]

\[
a_{n^2+1}(z) = 0, \ldots, a_{n^2+i}(z) = 0 \quad \text{and} \quad a_{n^2+i+1}(z) = 9, \ldots, a_{(n+1)^2}(z) = 9.
\]

Consequently it is easy to see that (8) holds for \(x = z_{k+1}^- \). \(\square \)
Lemma 8. If $\frac{1}{2} < \alpha < 1$, then the set $A(\alpha, a_1, ..., a_{N2}, \varepsilon)$ from Lemma 7 is right porous.

Proof: Choose an arbitrary $x \in A(\alpha, a_1, ..., a_{N2}, \varepsilon)$.

For each natural n, let m_n be the maximum of those natural i, for which there exist natural numbers u, v such that

$$n^2 \leq u < v \leq (n + 1)^2, \quad a_s(x) = 9 \text{ for each } u < s \leq v$$

and $v - u = i$. It is easy to see that

$$2n + 1 - e(x, n) = c(x, n) \leq m_n(e(x, n) + 1) \text{ and consequently}$$

$$m_n \geq \frac{2n + 1 - e(x, n)}{e(x, n) + 1}. \quad (10)$$

On account of (2) we have that

$$e(x, n) \leq \frac{\varepsilon(2n + 1)}{n^\alpha} \text{ for } n \geq N$$

and therefore (10) implies that there exists $c > 0$ and a natural n_0 such that

$$m_n \geq cn^\alpha \text{ for all } n \geq n_0. \quad (11)$$

Now, for each n, choose u_n, v_n such that

$$v_n - u_n = m_n \text{ and } (9) \text{ holds for } u = u_n, \ v = v_n.$$

Put

$$y_n = x + 10^{-v_n} \quad \text{and} \quad z_n = x + 10^{-v_n + 1}.$$

It is easy to see that, for each $t \in (y_n, z_n)$, we have

$$a_s(t) = 0, \text{ for each } u_n < s \leq v_n - 1$$

and therefore

$$c(t, n) \leq 2n + 1 - (m_n - 1). \quad (12)$$

If n is so big that $n > n_0$, $n > N$ and $2n + 2 - cn^\alpha < (2n + 1)(1 - \frac{\varepsilon}{n^\alpha})$, we have by (12) and (11)

$$c(t, n) \leq 2n + 2 - cn^\alpha < (2n + 1)(1 - \frac{\varepsilon}{n^\alpha}).$$

Thus we obtain by (2) that $t \notin A(\alpha, a_1, ..., a_{N2}, \varepsilon)$. Consequently

$$p^+\left(A(\alpha, a_1, ..., a_{N2}, \varepsilon), x\right) \geq \lim_{n \to \infty} \frac{10^{-(v_n - 1)} - 10^{-v_n}}{10^{-v_n + 1}} = \frac{9}{10}.$$
A σ-porous set need not be σ-bilaterally porous

References

[Za 2] ———, Sets of σ-porosity and sets of σ-porosity (ϱ), Časopis Pěst. Mat. 101 (1976), 350–359.

Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic

(Received January 19, 1994)