On the Jacobson radical of strongly group graded rings

A.V. Kelarev

Abstract. For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical $J(R_e)$ is locally nilpotent, but $J(R)$ is not locally nilpotent. This answers a question posed by Puczyłowski.

Keywords: strongly graded rings, radicals, local nilpotency

Classification: Primary 16A03; Secondary 16A20

Several interesting results of ring theory establish the local nilpotency of the Jacobson radical of some ring constructions (cf. [9]). In this paper we consider an analogous question for strongly group graded rings. Let G be a group. An associative ring $R = \bigoplus_{g \in G} R_g$ is said to be strongly G-graded if $R_g R_h = R_{gh}$ for all $g, h \in G$. Strongly group graded rings have been intensively investigated for several years (cf., for example, [12],[15],[20]). In [18] the following question was posed: is it true that for every free group G of rank ≥ 2 the Jacobson radical of each strongly G-graded ring is locally nilpotent? (As it is noted in [18], the question is also connected with [14], Problem 24, and with a problem on the local nilpotency of the Jacobson radical of a skew polynomial ring, cf. [19].) It follows from the results of [6] that the answer is positive in the case when R_e satisfies the ascending chain condition for left annihilators, where e is the identity of G. It is also known that the answer is positive for group rings of free groups of rank ≥ 2 (cf. [18]). The answer to the analogous question for the rings of polynomials in at least two non-commuting variables is also positive (cf. [18]).

We shall show that in general the answer is negative. Namely, for an arbitrary group G, we construct a strongly G-graded ring R such that the Jacobson radical $J(R)$ is not nil. On the other hand, we shall prove that, for the positive answer to the question above, it suffices to assume that $J(R_e)$ is left T-nilpotent. It will also be shown that the weaker condition that $J(R_e)$ is equal to the Baer radical $B(R_e)$, is not sufficient for the local nilpotency of $J(R)$.

Our proofs are based on the previous results of [7], [10] and [21].

Theorem 1. For each group G, there exists a strongly G-graded ring R such that the Jacobson radical $J(R)$ is not nil.
Lemma 1. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring, and let $h \in G$. Then there exists a G-graded ring $Q = \bigoplus_{g \in G} Q_g$ such that $Q \supseteq R$, $J(Q) \supseteq J(R)$, $Q_g \supseteq R_g$ and $Q_g Q_h \supseteq R_{gh}$ for each $g, h \in G$.

Proof: Let Z be the ring of integers, R^1 the ring R with identity 1 adjoined, $Z[x, y]$ the ring of polynomials with non-commuting variables x, y. Denote by W the free product of R and $Z[x, y]$. For $w \in W$, let $\langle w \rangle$ be the subring generated in W by w. Put $M = R + Ry + xR + xRy$, $S = M + \langle xy \rangle + \langle xy \rangle x + y \langle xy \rangle + \langle yx \rangle$. To simplify the notation, we shall denote by the same letters elements and their images in the quotient rings which will be introduced. If we factor out the ideal generated in W by x^2, y^2, yR, Rx and all $r - yxr, r - ryx$, where r runs over R, then the resulting quotient ring Q is equal to $Z + \langle x \rangle + \langle y \rangle + S$. Clearly, S and M are ideals of Q. It is routine to verify that

$$M = \begin{bmatrix} R & Ry \\ xR & xRy \end{bmatrix}$$

and

$$S/M = \begin{bmatrix} \langle xy \rangle & \langle xy \rangle x \\ y\langle xy \rangle & \langle yx \rangle \end{bmatrix}$$

are Morita contexts (cf. [1]). Further, $R, xRy \cong R$ and $Ry, xR \cong R^0$, where R^0 stands for the ring with zero multiplication defined on the additive group of R. Since $\langle xy \rangle$ and $\langle yx \rangle$ are semiprime rings and S/M satisfies the left annihilator condition in the sense of [21], then [21], Lemma 2.6, implies that S/M is semiprime. Therefore $J(S) = J(M)$.

Take any $q \in J(Q)$, say $q = a + bx + cy + s$, where $a, b, c \in Z, s \in S$. If $a \neq 0$, then $qxy \notin M$ and so $0 \neq qxy \in J(S/M)$, a contradiction. If $a = 0, b \neq 0$, then $0 \neq qy \in J(S/M)$ gives a contradiction. Finally, if $a = b = 0, c \neq 0$, then $0 \neq qx \in J(S/M)$, a contradiction again. Therefore $a = b = c = 0$, that is $q \in J(M)$. Thus $J(Q) = J(M)$.

Denote by I the ideal generated in Q by $J(R)$. Then

$$I = \begin{bmatrix} J(R) & J(R)y \\ xJ(R) & xJ(R)y \end{bmatrix}.$$

Clearly, I is the largest ideal of M satisfying the property that $I \cap R \subseteq J(R)$ and $I \cap xRy \subseteq J(xRy) = xJ(R)y$. In view of [10], Corollary 1, and [11], Corollary 6, we conclude $I = J(M)$. Hence $I = J(Q)$. In particular, $J(Q) \supseteq J(R)$.

To make Q a G-graded ring, we put $x \in Q_h, y \in Q_{h-1}, Z \subseteq Q_e$, and then the grading naturally comes from R. For example, $xR_g y \subseteq Q_{gh-1} \subseteq Q_{hg}$. Since $R_{gh} y \subseteq Q_g$ and $x \in Q_h$, we get $Q_g Q_h \supseteq (R_{gh} y) x = R_{gh}$, as required. □
Lemma 2. Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring. Then there exists a \(G \)-graded ring \(Q = \bigoplus_{g \in G} Q_g \) such that \(Q \supseteq R, J(Q) \supseteq J(R), Q_g \supseteq R_g \) and \(Q_g Q_h \supseteq R_{gh} \) for all \(g, h \in G \).

Proof: Denote by \(R^{(h)} \) the ring constructed by \(R \) and \(h \) in Lemma 1. We may order the set \(G \), identify the elements of \(G \) with ordinal numbers and define an ascending chain of \(G \)-graded rings \(T_\alpha \) by putting \(T_1 = R^{(1)}, T_\alpha = (\bigcup_{\beta < \alpha} T_\beta)^{(\alpha)} \).

The transfinite induction shows that \(J(T_\alpha) \supseteq J(R) \) in view of Lemma 1. However, \(G = \{ \alpha | \alpha \leq \tau \} \) for some \(\tau \). Hence a straightforward verification shows that \(Q = \bigcup_{\alpha \leq \tau} T_\alpha \) is the desired ring. \(\square \)

Lemma 3. Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring. Then there exists a strongly \(G \)-graded ring \(Q = \bigoplus_{g \in G} Q_g \) such that \(Q \supseteq R, J(Q) \supseteq J(R), \) and \(Q_g \supseteq R_g \) for all \(g \in G \).

Proof: Denote by \(R' \) the ring constructed in Lemma 2, and put \(R_1[1] = R', R_{n+1} = (R_n)^' \). Then it is routine to verify that \(Q = \bigcup_{n=1}^{\infty} R_n \) is the required example. \(\square \)

Proof of Theorem 1 easily follows from Lemma 3 if we take any quasi-regular but not nil ring \(R \) and make it \(G \)-graded with \(R_e = R \).

Now we shall give a new condition sufficient for the Jacobson radical of a ring strongly graded by a free group to be locally nilpotent. In fact, our condition is applicable not only to free groups, but also to all u.p.-groups. A group \(G \) is called a unique product (u.p.-)group if, for any non-empty subsets \(X, Y \) of \(S \), there exists at least one element uniquely presented in the form \(xy \), where \(x \in X, y \in Y \) (cf. [16], §13.1). The radicals of rings graded by u.p.-groups were considered, in particular, in [6] and [7]. A ring \(R \) is said to be left \(T \)-nilpotent if, for every sequence \(x_1, x_2, \ldots \in R \), there exists \(n \) such that \(x_1 \ldots x_n = 0 \). The class of left \(T \)-nilpotent rings lies strictly between the class of nilpotent rings and the Baer radical class (cf. [5]).

Theorem 2. Let \(G \) be a u.p.-group, \(R = \bigoplus_{g \in G} R_g \) a strongly \(G \)-graded ring. If \(J(R_e) \) is left \(T \)-nilpotent, then \(J(R) \) is locally nilpotent.

Proof: Given that \(G \) is a u.p.-group, it follows from [7], Theorem 2.2, that the Levitzky radical \(L(R) \) is homogeneous, i.e. \(L(R) = \bigoplus_{g \in G} L(R) \cap R_g \). Since \(R/L(R) \) is...
is strongly G-graded, we may assume that from the very beginning $L(R) = 0$.

Suppose to the contrary that $J(R) \neq 0$. For $r \in R$, $g \in G$, denote by r_g the projection of r on R_g, and put $\text{supp}(r) = \{ g \in G | r_g \neq 0 \}$. Let $l(r) = |\text{supp}(r)|$. Choose a non-zero element s in $J(R)$ with minimal length $l(s)$, and take any $h \in \text{supp}(s)$. If $s_h R_{h-1} = 0$, then $s_h R_{h-1} R = 0$, and so $s_h \in A = \{ r \in R | r R = 0 \}$. However, $A \subseteq L(R) = 0$, because $A^2 = 0$. Thus $s_h R_{h-1} \neq 0$. Therefore the set $P = \{ r_r | r \in J(R), \ l(r) = l(s) \}$ is non-zero. Given that G is a u.p.-group, Theorem 3.2 of [7] tells us that $P \subseteq J(R_e)$. Denote by I the ideal generated in R by P. We claim that I is left T-nilpotent.

Suppose that there exists a sequence of elements x_1, x_2, \ldots of I such that $x_1 \ldots x_n \neq 0$ for all n. Each x_i is a finite sum of elements of the form $ar_e b$, where $r \in J(R)$, $l(r) = l(s)$, a and b are homogeneous elements of R^1. We may assume that all b belong to R. (Indeed, if $b \in Z$, then we can replace x_i by $x_i x_{i+1}$, and consider the sequence $x_1, \ldots, x_i x_{i+1}, x_{i+2}, \ldots$) Denote by $S(x)$ the set of such summands of x_i. For arbitrarily large n we can pick $y_1 \in S(x_1), \ldots, y_n \in S(x_n)$ such that $y_1 \ldots y_n \neq 0$. Since all the $S(x_i)$ are finite, a standard argument shows that there exists an infinite sequence y_1, y_2, \ldots where $y_i \in S(x_i)$ and $y_1 \ldots y_n = 0$ for all n. Then $y_i = a^{(i)} r_e^{(i)} b^{(i)}$ where $r^{(i)} \in J(R)$, $l(r^{(i)}) = l(s)$, $a^{(i)}$ and $b^{(i)}$ are homogeneous elements of R^1, and $b^{(i)} \in R$. Given that R is strongly graded, $b^{(2)} \in R$, and G is a group, it follows that $b^{(2)} = c^{(2)} d^{(2)}$ for some homogeneous elements $c^{(2)}, d^{(2)}$ such that $b^{(1)} a^{(2)} r_e^{(2)} c^{(2)} \in R_e$. Similarly, for any $i \geq 3$, there exist homogenous elements $c^{(i)}, d^{(i)}$ such that $b^{(i)} = c^{(i)} d^{(i)}$ and $d^{(i-1)} a^{(i)} r_e^{(i)} c^{(i)} \in R_e$. Let $z_1 = r_e^{(1)}$, $z_2 = b^{(1)} a^{(2)} r_e^{(2)} c^{(2)}$, and $z_i = d^{(i-1)} a^{(i)} r_e^{(i)} c^{(i)}$ for $i \geq 3$. Then, $z_1, z_2, z_3, \ldots \in P$. Since $J(R_e)$ is left T-nilpotent and contains P, we get $z_1 \ldots z_n = 0$ for some $n > 1$. Hence $y_1 \ldots y_n = a^{(1)} z_1 \ldots z_n d^{(n)} = 0$.

This contradiction shows that I is left T-nilpotent, and so $I \subseteq L(R) = 0$. Therefore $J(R) = 0$, which completes the proof. \hfill \Box

Let \mathbb{P} denote the set of positive integers. The well-known Golod’s example of a nil but not locally nilpotent ring R is \mathbb{P}-graded (cf. [16]). Therefore one cannot replace strongly graded rings by arbitrary graded rings in Theorem 2. Now we shall show that the left T-nilpotence cannot be weakened to Baer radicalness, either.

Theorem 3. Let G be a non-periodic group with identity e. Then there exists a strongly G-graded ring Q such that $J(Q_e) = B(Q_e)$ but $J(Q) \neq L(Q)$.

Proof: Let R be the Golod ring. Since R is \mathbb{P}-graded, R can easily be made G-graded with $R_e = 0$. Take any $h \in G$ and denote by Q, S, M the rings constructed by R as in the proof of Lemma 1. It has been proved that $J(Q) = J(M)$. The same reasoning shows that $B(Q) = B(M)$. Further,

$$M \cong \begin{bmatrix} R & Ry \\ xR & xRy \end{bmatrix},$$
whence

\[M_e = \begin{bmatrix} R_e & R_h y \\ x R_{h^{-1}} & x R_{e y} \end{bmatrix}. \]

Evidently \(R_e \) and \(x R_{e y} \) are isomorphic to \(R_e \) which satisfies \(J(R_e) = B(R_e) \), because it is zero. It follows from [10], Corollary 1, and [11], Corollary 6, that \(J(M_e) \) is equal to the largest ideal \(I \) of \(M_e \) with the property that \(I \cap R_e \subseteq J(R_e) \) and \(I \cap x R_{e y} \subseteq J(x R_{e y}) \). Besides, [10], Corollary 3, and [11], Corollary 6, imply that \(B(M_e) \) is the largest ideal of \(M_e \) with the property that \(I \cap R_e \subseteq J(R_e) \) and \(I \cap x R_{e y} \subseteq J(x R_{e y}) \). Therefore \(J(M_e) = B(M_e) \). Further, \(Q_e / S_e \cong \mathbb{Z} \) and \(S_e / M_e = \langle xy \rangle + \langle yx \rangle \) imply \(J(Q_e) = B(Q_e) \). It follows from [21], Lemma 2.3, that \(J(Q_e) \supseteq J(R_e) \). This and transfinite induction show that all rings \(Q \) obtained from \(R \) in Lemmas 2 and 3 satisfy \(J(Q_e) = B(Q_e) \). However \(J(Q) \) is not locally nilpotent, because \(J(Q) \supseteq J(R) \). Thus \(Q \) is the required example. \(\square \)

Note that in the opposite case, where \(G \) is locally finite, it follows from the results of [2] and [3] that \(J(R_e) = L(R_e) \) implies \(J(R) = L(R) \) (cf. [13], Lemma 1.1). Analogous results were obtained in [2] for the more general case of rings graded by locally finite semigroups. A sufficient condition for the Jacobson radical of an algebra graded by a finite group to be nilpotent follows from the main theorem of [17].

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TASMANIA, G.P.O.Box 252 C, HOBART, TASMANIA 7001, AUSTRALIA

(Received December 10, 1993)