Cardinal invariants and compactifications

A. GRYZLOV

Abstract. We prove that every compact space X is a Čech-Stone compactification of a normal subspace of cardinality at most $d(X)^{t(X)}$, and some facts about cardinal invariants of compact spaces.

Keywords: Čech-Stone compactification, cardinal invariants
Classification: 54A25, 54D35

The notions of a compactness and of a compactification are very close. Really, any compact space is a compactification of any of its dense subsets. But a useful information can be obtained from this fact only in the case when a compact space is a compactification of some certain type.

The classic type is the Čech-Stone compactification. When a compact space is a Čech-Stone compactification of some of its subsets? Theorem 1.1 says that any compact space X is a Čech-Stone compactification of some normal subspace $B \subseteq X$ such that $|B| \leq d(X)^{t(X)}$, where $d(X)$ is a density of X, $t(X)$ is its tightness. The case, when $|X| \leq d(X)^{t(X)}$ is trivial, in this case $B = X$. In the opposite case the theorem says that "extra" points from $X \setminus B$ are constructed by a standard way, as points of Čech-Stone compactification of a "not large" normal subspace. For example, by this theorem, we can say that Fedorchuk’s compact space, that is the hereditarily separable, hereditarily normal compact space of cardinality 2^c, is a Čech-Stone compactification of a subspace of a cardinality c. We prove some new facts about cardinal invariants.

The definitions and notations used here are standard, one can find them in [2], for example.

We use the notation of a sequential extension of a set A, that is a set B, $A \subseteq B \subseteq [A], |B| \leq |A|^\omega$ such that if a countable set $B' \subseteq B$ has a limit point in X, then there is a limit point of B' in B. One can construct a sequential extension by induction.

Theorem 1.1. Let X be a compact space, A be a dense subset of X. Then $X = \beta B$, where $A \subseteq B$, $|B| \leq |A|^{t(X)}$, B is a normal and countably compact subspace.

Proof: The case $|X| = |A|^{t(X)}$ is trivial. Let $|X| > |A|^{t(X)}$. We construct by induction the family $\{B_\alpha : \alpha < \omega_{\tau^+}\}$, where $t(X) = \tau$ such that:
(1) $B_0 = A$;
(2) $B_\beta \subseteq B_\alpha$ for $\beta \leq \alpha$;
(3) a sequential extension of B_α is in $B_{\alpha+1}$;
(4) $|B_\alpha| \leq |A|^\tau$ for $\alpha < \omega_\tau$;
(5) $\bigcup \{B_\alpha : \alpha < \omega_\tau +\} = B$, where B is a normal, countably compact subspace and $X = \beta B$.

Let $\xi(A)$ be a choice function, defined on the set of all nonempty subsets of X. Let $B_0 = A$. Let $\{B_{\beta} : \beta < \alpha\}$ with conditions (1)–(4) be constructed. Let B'_α be a sequential extension of the set $\bigcup \{B_{\beta} : \beta < \alpha\}$ and

$$B_\alpha = B'_\alpha \cup \{\xi([T]_X \cap [T']_X) : \tau', \tau' \in \exp \tau, B'_\alpha\}.$$

Then $|B_\alpha| \leq |A|^\tau$ and (1)–(4) hold for $\{B_{\beta} : \beta \leq \alpha\}$. Note that B is a countably compact space. Let us prove that $X = \beta B$. Let F_1, F_2 be disjoint closed subsets of B. Let $([F_1]_X \cap [F_2]_X) \setminus B \neq \emptyset$ and $x \in ([F_1]_X \cap [F_2]_X) \setminus B$. Since $t(X) = \tau$, there are $F'_1 \subseteq F_1$ and $F'_2 \subseteq F_2$ such that $F'_1, F'_2 \subseteq B_\alpha$ and $|F'_1| \leq \tau$, $|F'_2| \leq \tau$, and $x \in [F'_1]_X \cap [F'_2]_X$. There is $\alpha < \omega_\tau$ such that $F'_1, F'_2 \subseteq B_\alpha$. Since F'_1, F'_2 are disjoint, closed subsets of B, then $[F'_1]_X \cap [F'_2]_X \subseteq ([F_1]_X \cap [F_2]_X) \setminus B$. Then $\xi([F'_1]_X \cap [F'_2]_X) \in X \setminus B$, a contradiction. So $X = \beta B$. It follows from the above proof that B is a normal space. The theorem is proved. \qed

Recall that a space X is weakly normal if in every closed, countable, discrete set $A \subseteq X$ there is a countable $A' \subseteq A$ C^*-embedded in X [3].

We say that X is an h-weakly normal space if X is hereditarily weakly normal.

Definition 1.2. A space X is called d-normal if in every closed, countable, discrete set $A \subseteq X$ there is a countable $A' \subseteq A$ with discrete family of neighborhoods. It means that for every point $x \in A'$ there is a neighborhood Ox such that $\{Ox : x \in A'\}$ is a discrete family.

We say that a space X is hd-normal if X is a hereditarily d-normal.

It is clear that a hd-normal (d-normal) space is h-weakly (weakly) normal, and a hereditarily normal space is hd-normal as well as it is compact first countable space or a normal first countable space.

On the other hand, the space $N^* = \beta N \setminus N$, the remainder of the Čech-Stone compactification of a countable discrete space, is an h-weakly normal, but not an hd-normal space. Really, the h-weakly normality of N^* follows from the fact that $[D]_{N^*}$ is homeomorphic to $\beta N = \beta D$ for every countable discrete set $D \subseteq N^*$. But for a discrete set D the space $X = N^* \setminus ([D]_{N^*} \setminus D)$ is not d-normal.

Theorem 1.3. Let X be an hd-normal compact space, or an h-weakly normal space with countable tightness, and $A \subseteq X$ be a dense subset of X. Then $X = \beta B$ where $A \subseteq B$, $|B| \leq |A|^t(X)$, B is a normal countably compact space such that every compact space $K \subseteq X \setminus B$ is finite.

Proof: Again, we suppose that $|X| > |A|^t(X)$. Let the set B be as in Theorem 1.1. We prove that every compact space $K \subseteq X \setminus B$ is finite. Let $K \subseteq X \setminus B$
be an infinite compact set. There is a countable discrete (as a subspace) subset \(D \subseteq K \). We consider a set \(B \cup D \). By \(h \)-weakly normality (moreover \(hd \)-normality) of \(X \), there is a countable set \(D' \subseteq D \) \(C^* \)-embedded in \(B \cup D \). Then \([D']_X = \beta D' \), so \([D']_X \) is a Čech-Stone compactification of the countable discrete set. But \(\beta D' = \beta N \) is not an \(hd \)-normal and the tightness of \(\beta D' \) is not countable. This contradiction proves the theorem. \(\square \)

Theorems 1.1 and 1.3 were announced by the author in [4].

Lemma 1.4. Let \(X \) be an \(h \)-weakly normal compact space with countable tightness, \(X = \beta B \) for some \(B \subseteq X \). The \(\Phi \setminus F \) is a discrete (as a subspace) set for closed \(F, \Phi \subseteq X \) such that \(F \subseteq \Phi \) and \(F \cap B = \Phi \cap B \).

Proof: Let \(x \in \Phi \setminus F \). There is a neighborhood \(Ox \) of \(x \) such that \([Ox]_X \cap F = \emptyset \). Therefore, \([Ox]_X \cap \Phi = [Ox]_X \cap (\Phi \setminus F) \subseteq X \setminus B \). By Theorem 1.3, the set \([Ox]_X \cap \Phi \) is finite, and therefore \(\Phi \setminus F \) is a discrete set. The lemma is proved. \(\square \)

Recall that a point \(x \in X \) is called a \(b \)-point if \(x = F \cap \Phi \) where \(F, \Phi \) are closed in \(X \), and \(x \) is a limit point for \(F \) and \(\Phi \) [5].

\(\alpha \)-points (limits of sequences of points of \(X \)) are \(b \)-points as well as points of non-normality (points \(x \) of a normal space \(X \) such that \(X \setminus \{x\} \) is non-normal).

Theorem 1.5. Let \(X \) be an \(h \)-weakly normal compact space with countable tightness. Then \(|\{x : x \text{ is a } b\text{-point in } X\}| \leq d(X)^\omega \).

Proof: By Theorem 1.3, \(X = \beta B \) for a normal \(B \) such that \(|B| \leq d(X)^\omega \) and every compact subset of \(X \setminus B \) is finite. We prove that none of the points of \(X \setminus B \) is a \(b \)-point. Indeed, let \(x \in X \) be a \(b \)-point, that is, \(x = F \cap \Phi \) where \(F, \Phi \) are closed in \(X \), and \(x \) is a limit point for \(F \) and \(\Phi \). Let \(F' = F \cap B \), \(\Phi' = \Phi \cap B \). Then \(x \in [F']_X \cap (\Phi')_X \). Really, by Lemma 1.4, the sets \(F \setminus [F']_X \) and \(\Phi \setminus [\Phi']_X \) are discrete and therefore \(x \in [F']_X, x \in (\Phi')_X \). But \(X \) is a Čech-Stone compactification of the normal space \(B \). This contradiction proves the theorem. \(\square \)

Corollary 1.6. Let \(X \) be a weakly normal compact space with countable tightness and let all points of \(X \) be \(b \)-points. Then \(|X| \leq d(X)^\omega \).

The above results have some connections with the results from [6]. Recall that \(x \in X \) is an \(hb \)-point if \(x \) is a \(b \)-point in every closed subspace \(X' \subseteq X \), if \(x \) is not isolated in \(X' \) [5].

By Arhangel’skiǐ’s theorem [7] and Theorem 1.5 we have

Theorem 1.7. Let \(X \) be an \(h \)-weakly normal compact space with countable tightness, \(\chi(X) \leq 2^\omega \) and every non-isolated point in \(X \) is an \(hb \)-point. Then \(|X| \leq 2^\omega \).
Proposition 1.8. Let X be a countably compact hd-normal space, $A \subseteq X$ be a dense subset. Then there is $B \subseteq X$ such that $A \subseteq B$, $|B| \leq |A|^{\omega}$, B is countably compact such that every subset $F \subseteq X \setminus B$ closed in X is finite.

Proof: It is clear that B is a sequential extension of A. The only thing we have to explain is the last part. Let $F \subseteq X \setminus B$ be an infinite closed subset of X. There is a countable discrete (as a subspace) set $D \subseteq F$. By an hd-normality of X there is a countable set $D' = \{x_i : i \in \omega\}$, $D' \subseteq D$ with a discrete in $B \cup D$ family of neighborhoods $\{Ox_i : i \in \omega\}$. But $Ox_i \cap B \neq \emptyset$ for every $i \in \omega$, so we have the discrete infinite family in the compact space B. This contradiction proves the proposition. \qed

By the same way as Lemma 1.4 we can prove

Lemma 1.9. Let X be an hd-normal space, $B \subseteq X$ be a dense, countably compact subspace, $F, \Phi \subseteq X$ such that $F \subseteq \Phi$, $F \cap B = \Phi \cap B$. Then $\Phi \setminus F$ is a discrete (as a subspace) set, moreover, $\Phi \setminus F$ is a free sequence in $X \setminus F$.

Lemma 1.10. Let X be an hd-normal space, $B \subseteq X$ be a countably compact subspace. Then for every closed set $F \subseteq X$ there is a family $\pi = \{OF\}$ of neighborhoods of F such that $|\pi| \leq |B|$, $(\bigcap\{OF : OF \in \pi\} \cap [B]) \setminus F \cap [B]$ is discrete; moreover, if $F \cap B = \emptyset$, then $\bigcap\{OF : OF \in \pi\} \cap [B] = \emptyset$.

Proof: We consider $F \cap [B]$. It is clear that there is a family $\pi = \{OF\}$ of neighborhoods of F such that $|\pi| = |B|$, $\bigcap\{OF : OF \in \pi\} \cap B = F \cap B$. Then $(\bigcap\{OF : OF \in \pi\} \cap [B]) \setminus F \cap [B]$ is discrete by Lemma 1.9. If $F \cap B = \emptyset$, then $\bigcap\{OF : OF \in \pi\} \cap [B] \subseteq [B] \setminus B$. In the same way as in the proof of Proposition 1.7 we can prove that $\bigcap\{OF : OF \in \pi\} \cap [B]$ is finite. We can add a finite number of neighborhoods of F to the family π and get what we need. The lemma is proved. \qed

Proposition 1.11. Let X be an hd-normal, countably compact space such that every point $x \in X$ is a limit point of a closed set of cardinality at most $d(X)^{t(X)}$. Then $|X| \leq d(X)^{t(X)}$.

Proof: By Proposition 1.8 there is a dense, countably compact space $B \subseteq X$ such that every closed set $F \subseteq X \setminus B$ is finite and $|B| \leq d(X)^{t(X)}$. Let $x \in X \setminus B$. There is a closed $F_x \subseteq X$ such that $|F_x| \leq d(X)^{t(X)}$ and x is a limit point of F_x. Then by Lemma 1.9, $x \in [F_x \cap B]$. There is $F'_x \subseteq F_x \cap B$ such that $|F'_x| \leq t(X)$ and $x \in [F'_x]$. Then $|X \setminus B| \leq |B|^{t(X)} \leq d(X)^{t(X)}$. The proposition is proved. \qed

Proposition 1.12. Let X be an hd-normal compact space. Then $hl(X) \leq s(X)^{\omega}$.

Proof: We prove that $\chi(F, X) \leq s(X)^{\omega}$ for every closed $F \subseteq X$. Really, for a closed $F \subseteq X$ there is a family $\pi = \{OF\}$ of neighborhoods of F such that $|\pi| \leq s(X)$ and $d(\bigcap\{OF : OF \in \pi\} \setminus F) \leq s(X)$ (this is well known, see for
example [5]). By Proposition 1.8 there is a set $B \subseteq \bigcap\{\{OF : OF \in \pi\} \mid F\}$ such that $|B| \leq s(X)^\omega$, B is countably compact, $[B] \supseteq (\bigcap\{\{OF : OF \in \pi\}\}) \setminus F$ and every subset of B closed in X is finite. By Lemma 1.9 there is a family $\pi' = \{UF\}$, $|\pi'| \leq s(X)^\omega$ of neighborhoods of F such that $(\bigcap\{\{UF : UF \in \pi\}\} \setminus \{B\}) \setminus F \setminus [B]$ is discrete and therefore has cardinality at most $s(X)$. Finally, $\chi(F, X) \leq s(X)^\omega \cdot s(X) = s(X)^\omega$. The proposition is proved.

Recall that a free sequence of cardinality τ is a set $\xi\{x_\alpha : \alpha < \tau\}$ such that for all $\beta < \tau$ $\{\{x_\alpha : \alpha < \beta\} \cap \{x_\alpha : \alpha \geq \beta\}\} = \emptyset$ (see [6]).

Define $A(X) = \sup\{\tau : \tau$ is cardinality of a free sequence in $X\}$, $\varrho A(x, X) = A(X \setminus \{x\})$, $\varrho A(x, X) = \sup\{\varrho A(x, X) : x \in X\}$. A. Arhangelskii proved that $t(X) = A(X)$ for compact spaces [7]; moreover,

$$t(X) = A(X) \leq \varrho A(X) \leq s(X).$$

Note that for Alexandroff’s double circle $s(X) = 2^\omega$, $\varrho A(X) = A(X) = \omega$. The same construction with Fedorchuk’s compact space gives the space with $s(X) = 2^c$ and $\varrho A(X) = \omega$.

Theorem 1.13. Let X be an hd-normal compact space. Then $\chi(x, X) \leq \varrho A(x, X)^\omega$.

Proof: Let there be a point $x \in X$ such that $\varrho A(x, X)^\omega < \chi(x, X)$. Define $\varrho A(x, X) = \tau$. By induction we construct a set $D = \{y_\alpha : \alpha < \omega_\tau^+\}$, a family $\{B_\alpha : \alpha < \omega_\tau^+\}$, $|B_\alpha| \leq \tau^\omega$ of neighborhoods of x such that $\big(\{\{y_\alpha : \alpha < \delta\} \cap \bigcap\{\{Ox : Ox \in B_\delta\}\} \setminus \{x\}\big) = \emptyset$, $\delta < \omega_\tau^+$. Let $y_0 \in X$, $B_0 = \{Ox\}$, where $\{Ox\} \notin y_0$. Let $\{y_\alpha : \alpha < \delta\}$ and $\{B_\alpha : \alpha < \delta\}$ be constructed. If $x \notin \{\{y_\alpha : \alpha, \delta\}\}$, let $B_\delta = \{\{B_\alpha : \alpha < \delta\} \cup \{Ox\}$, where $Ox \cap \{y_\alpha : \alpha < \delta\} = \emptyset$. We choose δ_5 in the set $\bigcap\{\{Ox : Ox \in B_\delta\}\} \setminus \{x\}$. If $x \in \{\{y_\alpha : \alpha < \delta\}\}$, we use Proposition 1.6 and Lemma 1.9. Since $\{\{y_\alpha : \alpha < \delta\}\} \subseteq \tau$, let us consider a family $\pi = \{Ox\}$ of neighborhoods of x, $|\pi| \leq \tau^\omega$ such that $T = (\bigcap\{\{Ox : Ox \in \pi\}\} \setminus \{\{y_\alpha : \alpha < \delta\}\} \setminus \{x\})$ is empty or is a free sequence in $X \setminus \{x\}$, and $|T| \leq \varrho A(x, X)$. Hence, there is a family π' of neighborhoods of x of cardinality at most τ^ω such that $\big(\bigcap\{\{Ox : Ox \in \pi\} \setminus \{\{y_\alpha : \alpha < \delta\}\}\} \setminus \{x\}\big) = \emptyset$. Let $B_\delta \cap \big\{\{B_\alpha : \alpha < \delta\} \cup \pi', \big\}$ and choose δ_5 from $\bigcap\{\{Ox : Ox \in B_\delta\}\} \setminus \{x\}$. If we continue until ω_τ^+, we get a free sequence of cardinality τ^+. But this contradicts $\varrho A(x, X) = \tau$. The theorem is proved.

References

DEPARTMENT OF MATHEMATICS, CHAIR OF TOPOLOGY, UDMURTSK STATE UNIVERSITY, 71 KRASNOGEROISKAIA STR., 26031 IJEVSK, RUSSIA

(Received August 30, 1993)