The trace theorem

\[W_p^{2,1}(\Omega_T) \ni f \mapsto \nabla_x f \in W_p^{1-1/p, 1/2-1/2p}(\partial \Omega_T) \]
revisited

PETER WEIDEMAIER

Abstract. Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for \(T \downarrow 0 \). The proof is based on a version of Hardy’s inequality (cp. Appendix).

Keywords: trace theory, anisotropic Sobolev spaces

Classification: 46E35

Introduction.

The imbedding theorem described in the title can be found in LADYSHENSKAYA et al. [L/S/U, Chapter II, Lemma 3.4]. However, none of the references cited there seems to contain a complete proof. The theorem is also stated in IL’IN [I, Theorem 8.4]; but there too, no proof is given. Things look even worse, if we ask for the dependence of the imbedding constant \(c(T) \) on the height \(T \) of the space-time cylinder (for small \(T \)). In some applications of this trace theorem to nonlinear problems, one needs \(c(T) \leq c_0 \) for all \(T \) small (cf. WEIDEMAIER [W], particularly the Appendix). However, the formulation in IL’IN [I, Theorem 8.4], exhibits an explosion of \(c(T) \) for \(T \downarrow 0 \). To settle things, we shall give in this note a detailed proof for the imbedding, which also shows the uniformity of \(c(T) \) for \(T \downarrow 0 \).

The paper is organized as follows: in Chapter 1 we deduce an integral representation for \(\nabla_x f \) in terms of \(\partial_t f, \partial_x^2 f \), which is the basis for the estimates in Chapter 2.

Let us fix the notation: \(\Omega_T := \Omega \times (0, T) \) with the typical point \((x,t) \in \Omega_T \); here \(\Omega \subset \mathbb{R}^n \). The prime characterizes \((n-1)\)-dimensional quantities: thus we write \(x \in \mathbb{R}^n \) as \(x = (x', x_n), x' \in \mathbb{R}^{n-1}; Q^{n-1}_1(a', b') \) is the open parallelepiped \(\prod_{i=1}^{n-1}(a_i, b_i) \), when \(a' = (a_1, \ldots, a_{n-1}), b' = (b_1, \ldots, b_{n-1}); Q^{n-1}_1(\lambda) := Q^{n-1}(-\lambda 1', \lambda 1') \) for \(\lambda \in \mathbb{R} \); here \(1' := (1, \ldots, 1) \in \mathbb{N}^{n-1}; Q^n_+(\lambda) := Q^{n-1}(\lambda) \times (0, \lambda) \); the superscript ‘ always indicates the deletion of a coordinate (the n-th. one, if not further specified), e.g. \(\hat{y} = (y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n) \) (\(1 \leq i \leq n \)) and \(\hat{Q}^{n+1}_+(a, b) := \prod_{i=1}^{n+1}(a_i, b_i) \).

\[W_p^{2,1}(\Omega_T) := \{ u | \partial_x^\alpha u, \partial_t u \ (\text{distr. sense}) \in L_p(\Omega_T) \ \forall |\alpha| \leq 2 \} \]
with the obvious norm.

I thank Prof. V.A. Solonnikov, Leningrad, for valuable hints.
For a bounded domain \(\Omega \subset \mathbb{R}^n \), \(\partial \Omega \in C^2 \) means that \(\partial \Omega \) is a \(C^2 \)-hypersurface. The spaces \(W_p^{\alpha,\beta}(\partial \Omega_T) \) \((\alpha, \beta \in (0, 1)) \) are defined as usual, via a partition of unity on \(\partial \Omega \), and using local charts. We use the notation \(c^* \) to emphasize the non-dependence of the constant \(c \) on the quantity \(T \) (for \(T \) small).

1. Integral representation.

Our starting point is an integral representation for \(\partial \mathcal{L} f \) in terms of \(f \): if \(f \) is smooth and defined on \(Q_{n-1}^{-1}(-\lambda, 1') \times [0, 2\lambda] \times [0, 3T] \), then we have (cf. IL’IN/ SOLONNIKOV [I/S, p. 70, (6)] with \(m_i = 0, k_i = l_i \))

\[
\partial \mathcal{L} f(x, t) = \frac{A}{T^r} \int_{Q_n+1(0, Tz)} \cdots \int f((x, t) + y) \Pi(y, T) \, dy + \\
+ \sum_{i=1}^{n+1} B_i \int_0^T v^{-(1+r)} \int_{Q_n+1(0, vz)} \cdots \int f((x, t) + y) \Pi_i(\tilde{y}, v) \partial_i^l \psi_i(y_i, v) \, dy \, dv
\]

for \((x, t) \in \overline{Q_n^+}(\lambda) \times [0, T] \), \(T \leq T_0(\lambda) \) and \(\nu_j \leq l_j - 1 \), where (cp. [I/S, pp. 69–70])

\[
\Pi(y, T) := \prod_{j=1}^{n+1} \partial_j^{l_j} \chi_j(y_j, T)
\]

\[
\chi_j(y_j, T) := y_j^{l_j-\nu_j-1} \int_{y_j}^{T^{\kappa_j}} (T^{\kappa_j} - s)^{\mu_j} s^{\lambda_j} \, ds,
\]

\[
\Pi_i(\tilde{y}, v) := \prod_{j=1}^{n+1} \partial_j^{l_j} \chi_j(y_j, v),
\]

\[
\psi_i(y_i, v) := (\sum_{j \neq i} y_i^{l_i+\lambda_i-\nu_i} (y_i - y_i)\mu_i
\]

with certain parameters \(\mu_j, \lambda_j \in \mathbb{N} \) and certain \(A, B_i \in \mathbb{R} \); here \(Tz := (T^{\kappa_1}, \ldots, T^{\kappa_{n+1}}) \), \(r := \kappa \cdot (1 + \lambda + \mu) \), \(\frac{1}{r} := (1, \ldots, 1) \in \mathbb{N}^{n+1} \).

In the sequel we fix \(l := (2, \ldots, 2, 1) \in \mathbb{N}^{n+1}, \kappa := (\kappa', \kappa, \kappa_{n+1}) := \frac{1}{2} = (\frac{1}{2}, \ldots, \frac{1}{2}, 1) \) and choose the parameters \(\mu_j, \lambda_j \) so large that \(\partial_j^k \psi_j(y_j, v) \) vanishes for \(y_j = 0, \nu_j = T^{\kappa_j}, 1 \leq k \leq l_j \). Hence, integrating by parts and introducing \(K_i(y, v) := \Pi_i(\tilde{y}, v) \psi_i(y_i, v) (0 \leq y_i \leq v^{\kappa_i}) \), we have shown that

\[
(1.1) \quad \partial \mathcal{L} f(x, t) = \frac{A}{T^r} \int_{Q_n+1(0, Tz)} \cdots \int f((x, t) + y) \Pi(y, T) \, dy + \\
+ \sum_{i=1}^{n+1} \tilde{B}_i \int_0^T v^{-(1+r)} \int_{Q_n+1(0, vz)} \cdots \int \partial_i^{l_i} f((x, t) + y) K_i(y, v) \, dy \, dv.
\]
The kernels \(\Pi, K_i \) in this representation satisfy (uniformly w.r.t. \(y \in Q^{n+1}(0, i\mathbb{Q}) \))

\[
\begin{align*}
|\partial_y^\alpha \Pi(y, v)| & \leq c \cdot v^{r-k(1+\nu+\alpha)} \quad \forall |\alpha| \leq 2 \\
|\partial_{n+1}^s K_i(y, v)| & \leq c \cdot y_n^\varepsilon \cdot v^{r+1-k(1+\nu)-\varepsilon \kappa_n-s} \\
(\partial_{n+1} := \partial_{y_{n+1}}, 0 \leq s \leq 1, 1 \leq i \leq n+1, \varepsilon \in [0, 1]).
\end{align*}
\]

For the proof of these two inequalities, we first note that \(\partial_j^{l_j+\alpha_j} \chi_j(y_j, v) \) is a linear combination of terms of the form \((v^{\kappa_j} - y_j)^{\rho_1} y_j^{\rho_2} \) with \(\rho_1 + \rho_2 = \mu_j + \lambda_j - \nu_j - \alpha_j \), \(\rho_2 > 0 \) (for \(\lambda_j \) large) and consequently

\[
|\partial_j^{l_j+\alpha_j} \chi_j(y_j, v)| \leq c \cdot y_n^\varepsilon \cdot v^{-\kappa_j(\varepsilon + \alpha_j)} \cdot v^{\kappa_j(\mu_j + \lambda_j - \nu_j)} \quad (0 \leq y_j \leq v^{\kappa_j})
\]

for arbitrary \(\varepsilon \in [0, 1[; \) this implies (for \(1 \leq k \leq n-1 \))

\[
\begin{align*}
|\partial_{n+1}^k \Pi_k(y, v)| & \leq c \cdot y_n^\varepsilon \cdot v^{-\kappa_n \varepsilon - \kappa_n+1 \cdot s} \cdot v^{\kappa_n(\mu + \lambda - \nu) - \kappa_n \delta_k} \\
|\partial_{n+1}^s \Pi_n(y, v)| & \leq c \cdot v^{-\kappa_n+1 \cdot s} \cdot v^{\kappa_n(\mu + \lambda - \nu) - \kappa_n \delta_n} \\
|\Pi_{n+1}(y, v)| & \leq c \cdot y_n^\varepsilon \cdot v^{-\kappa_n \varepsilon} \cdot v^{\kappa_n(\mu + \lambda - \nu) - \kappa_n+1 \cdot \delta_{n+1}},
\end{align*}
\]

where \(\delta_j := \mu_j + \lambda_j - \nu_j \). The definition of \(\psi_i \) easily implies

\[
\begin{align*}
|\psi_k(y_k, v)| & \leq c \cdot v^{\kappa_n \cdot (l_k + \delta_k)} \\
|\psi_n(y_n, v)| & \leq c \cdot y_n^\varepsilon \cdot v^{-\kappa_n \varepsilon} \cdot v^{\kappa_n \cdot (l_n + \delta_n)} \\
|\partial_{n+1}^s \psi_{n+1}(y_{n+1}, v)| & \leq c \cdot v^{-\kappa_n \cdot (l_{n+1} + \delta_{n+1})} ;
\end{align*}
\]

since \(K_i(y, v) = \Pi_i(y, v) \psi_i(y_i, v) \), \(\kappa_i l_i = 1 \) (1 \(\leq i \leq n+1 \), \(\kappa_n+1 = 1 \), \(r = \kappa \cdot (1 + \lambda + \mu) \)), these formulas yield (1.3). For (1.2) compare IL’IN/ SOLONNIKOV [I/S, p. 72].

2. Estimates.

Our aim in this chapter is to prove the imbedding \(W_p^{2,1}(\Omega_T) \ni f \mapsto \nabla_x f \in W_p^{1-1/p, 1/p - 1/2p}(\partial \Omega_T) \) with the imbedding constant \(c^* \) independent of \(T \) (for \(T \) small); here we let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) with boundary of the class \(C^2 \). Flattening the boundary locally, it is no restriction to assume that \(\Omega \) is a cube i.e. \(\Omega = Q^n_+(\lambda) \).

Since \(C^2(Q^n_+(\lambda) \times [0, T]) \) is dense in \(W_p^{2,1}(Q^n_+(\lambda) \times (0, T]) \) (cf. RÁKOSNÍK [R, Theorem 3]) and since the Hestenes-Whitney extension method (cf. ADAMS [A, p. 83]) yields a linear continuous extension operator \(E_T : W_p^{2,1}(Q^n_+(\lambda) \times (0, T)) \to W_p^{2,1}(Q^n_+(2\lambda) \times (0, 2T)) \) with

\[
E_T(C^2(Q^n_+(\lambda) \times [0, T])) \subset C^2(Q^n_+(2\lambda) \times [0, 2T]) \]

and
\[\|E_T\|_{W_{p}^{2,1}(Q_{+}^{+}(\lambda) \times (0,T))} \leq B^* \text{ uniformly for all small } T, \text{ it is sufficient to prove} \]
\[\|\nabla_x f\|_{W_{p}^{1-rac{1}{p}, \frac{1}{p}(1-rac{1}{p})}(Q_{n-1}(\lambda) \times (0,T))} \leq c^* \cdot \|f\|_{W_{p}^{2,1}(Q_{+}^{+}(\lambda) \times (0,T))} \]

for all \(f \in C^{2}(Q_{+}^{+}(\lambda) \times [0,2T]) \). The most difficult part in this inequality is the estimate for the time-regularity of the trace, i.e.

\[\|\Delta_t h\|_{p,Q^{n+1}(\lambda) \times (0,T-h)} \leq h \cdot \|\partial_t (\gamma H_1)\|_{p,Q^{n+1}(\lambda) \times (0,T)} \]

(2.1) \[|\nabla_x f|_{L_{p}^{0, \frac{1}{2}(1-\frac{1}{p})}(Q_{n-1}(\lambda) \times (0,T))} \leq c^* \cdot \|f\|_{W_{p}^{2,1}(Q_{+}^{+}(\lambda) \times (0,T))} \],

where \(|g|^{p}_{L_{p}^{0,\beta}(Q_{n-1}(\lambda) \times (0,T))} := \int_{0}^{T} h^{-(1+p\beta)} \|\Delta_t h g\|^{p}_{p,Q^{n+1}(\lambda) \times (0,T-h)} dh \)

for \(\beta \in (0,1) \), when \((\Delta_t h, g)(x', t) := g(x', t+h) - g(x', t) \) and \(\|\cdot\|_{p, X} := \|\cdot\|_{L_{p}(X)} \).

The estimate for the spatial regularity follows from the more elementary trace theorem \(W_{p}^{1}(\Omega) \rightarrow W_{p}^{1-rac{1}{p}, \frac{1}{p}(1-rac{1}{p})}(\partial\Omega) \) (cp. KUFNER et al. [K/J/F, 6.8.13 Theorem, p. 337]) by an easy scaling argument (in \(t \)). In the sequel, we shall prove (2.1). For this purpose, we start from the representation (1.1) for \(\partial_j f \ (1 \leq j \leq n) \): splitting \(\int_{0}^{T} (\cdots) dv = \int_{h}^{T} (\cdots) dv + \int_{h}^{T} (\cdots) dv \) in the sum in the second line in (1.1) we get

\[\partial_j f(\cdot) = H_1(\cdot) + \sum_{i=1}^{n+1} \tilde{B}_i\{H_2^{(i)}(\cdot) + H_3^{(i)}(\cdot)\}, \]

where

\[H_1(\cdot) := \frac{A}{T^r} \int_{Q^{n+1}(0,T\mathbb{Z})} \cdots \int f(\cdot + y)\Pi(y,T) dy, \]

\[H_2^{(i)}(\cdot) := \int_{0}^{h} v^{-(1+r)} \int_{Q^{n+1}(0,v\mathbb{Z})} \cdots \int \partial_i^l f(\cdot + y) \cdot K_i(y,v) dy dv, \]

(2.2) \[H_3^{(i)}(\cdot) := \int_{h}^{T} v^{-(1+r)} \int_{Q^{n+1}(0,v\mathbb{Z})} \cdots \int \partial_i^l f(\cdot + y) \cdot K_i(y,v) dy dv. \]

In the sequel, we set \((\gamma H_1)(x', t) := H_1(x', 0, t) \); we find

\[\|\Delta_t h(\gamma H_1)\|_{p,Q^{n+1}(\lambda) \times (0,T-h)} \leq h \cdot \|\partial_t (\gamma H_1)\|_{p,Q^{n+1}(\lambda) \times (0,T)} \]

(2.3) \[|\partial_t (\gamma H_1)(x', t)| \leq \frac{A}{T^r} \cdot \|\Pi(\cdot, T)\|_{\infty,Q^{n+1}(0,T\mathbb{Z})} \cdot |Q^{n+1}(0,T\mathbb{Z})|^{1/p'} \]

(\text{use } |\Delta_t h f(\tau)| \leq \int_{0}^{h} |f'(\tau + s)| ds \text{ and Minkowski's integral inequality (cp. WHEELEN/ ZYGMUND [W/Z, p. 143]))}; now

\[|\partial_t (\gamma H_1)(x', t)| \leq \frac{A}{T^r} \cdot \|\Pi(\cdot, T)\|_{\infty,Q^{n+1}(0,T\mathbb{Z})} \cdot |Q^{n+1}(0,T\mathbb{Z})|^{1/p'} \]

\[\cdot \|\partial_t f((x', 0, t) + \cdot)\|_{p,Q^{n+1}(0,T\mathbb{Z})} \]
by (2.2) and Hölder’s inequality; hence

\[
\leq c^* \cdot T^{-\frac{|\kappa|}{2}} (1 - \frac{1}{p'}) - \kappa_j \cdot \|\partial_t f((x',0,t) + \cdot)\|_{p,Q^{n+1}(0,T\mathbb{R})}
\]

by the kernel-estimate (1.2). Now observe that

\[
\|\partial_t f((x',0,t) + \cdot)\|_{p,Q^{n+1}(0,T\mathbb{R})}^p = \int_0^{T^{\kappa n}} \|\partial_t f(x' + \cdot, y_n, t + \cdot)\|_{p,Q^{n+1}(0,T\mathbb{R})}^p \, dy_n,
\]

which easily implies via Fubini’s theorem

\[
\left(\int \ldots \int_{Q^{n-1}(\lambda) \times (0,T)} \|\partial_t f((x',0,t) + \cdot)\|_{p,Q^{n+1}(0,T\mathbb{R})}^p \, dx' \, dt\right)^{1/p} \leq |\bar{Q}^{n+1}(0,T\mathbb{R})|^{1/p} \|\partial_t f\|_{p,Q^n((-\lambda 1',0), (\lambda 1' + T\mathbb{R}', T^{\kappa n})) \times (0,2T)}.
\]

Hence, by the last inequality, (2.4) and since \(|\bar{Q}^{n+1}(0,T\mathbb{R})| = T|\kappa| - \frac{T}{2}\) and \(\kappa_j = \frac{1}{2}\);

r.h. side in (2.3)

\[
\leq c^* \cdot h \cdot T^{-\frac{1}{2}(1 + \frac{1}{p}) - \kappa_j} \cdot \|\partial_t f\|_{p,Q^n((-\lambda 1',0), (\lambda 1' + T\mathbb{R}', T^{1/2})) \times (0,2T)}
\]

so that, abbreviating \(\rho = \rho(p) := \frac{1}{2}(1 - \frac{1}{p})\),

\[
|\gamma H_1|_{L^{0,\rho}_p(Q^{n-1}(\lambda) \times (0,T))} \leq c^* \cdot T^{-\frac{1}{2}(1 + \frac{1}{p})} \left(\int_0^T h^{-1 + p(1 - \rho)} \, dh\right)^{1/p} \|\partial_t f\|_{p,Q^n(\mathfrak{a}, \mathfrak{b}) \times (0,2T)}
\]

with \(\mathfrak{a} := (-\lambda 1',0)\) and \(\mathfrak{b} := (\lambda 1' + T\mathbb{R}', T^{1/2})\); now \(1 - \rho = \frac{1}{2}(1 + \frac{1}{p})\) and the \(T\) factors in the last inequality cancelled, as desired.

Let us turn our attention to \(H_2^{(i)}\) : trivially, for \(h \leq T\),

\[
\|\Delta_{t,h} (\gamma H_2^{(i)})\|_{p,Q^{n-1}(\lambda) \times (0,T-h)} \leq 2 \cdot \|\gamma H_2^{(i)}\|_{p,Q^{n-1}(\lambda) \times (0,T)};
\]

furthermore, using the kernel estimate (1.3) (with \(s = 0\), we get

\[
|\gamma H_2^{(i)}(x',t)| \leq c^* \cdot \int_0^h \nu^{-1 + |\kappa| + |\kappa_n|} + \frac{1}{2} \int \ldots \int_{Q^{n+1}(0,v\mathbb{R})} y_n^\varepsilon \cdot |\partial_t f((x',0,t) + y)| \, dy \, dv;
\]
we now represent the integrand as
\[
\left\{ v^{-\frac{1}{p'}\left(1+|\kappa|\right)+\frac{1}{2}(\rho-\varepsilon,\kappa_n)} \right\} \cdot \left\{ v^{-\frac{1}{p'}\left(1+|\kappa|\right)+\frac{1}{2}(\rho-\varepsilon,\kappa_n)} \cdot y_n^{\varepsilon} \cdot |\partial_i^l f((x',0,t) + y)| \right\}
\]
(note that $1/2 = \rho + 1/2p$); we choose $\varepsilon \in (0, \rho/\kappa_n)$; Hölder’s inequality (with p', p) in $y-v$ space then yields

\[
(2.8) \quad \text{l.h.s. in (2.7)} \leq c^* \cdot \left(\int_0^h v^{-1+\frac{p'}{2}(\rho-\varepsilon,\kappa_n)} dv \right)^{1/p'} \cdot I^{1/p}
\]
with
\[
I := \int_0^h \int \ldots \int_{Q^{n+1}(0, v\xi)} v^{-\left(1+|\kappa|\right)+\frac{p}{2}(\rho-\varepsilon,\kappa_n)} \cdot y_n^{\varepsilon p} \cdot |\partial_i^l f((x',0,t) + y)|^p dy \, dv,
\]
where in the first integral we took into account that $|Q^{n+1}(0, v\xi)| = v^{|\kappa|}$; the first integral is clearly proportional to $h^{1/2}(\rho-\varepsilon,\kappa_n)$. Thus, after a computation as in (2.5), we get

\[
(2.9) \quad \| \gamma H_2^{(i)} \|_{p, Q^{-}\lambda(0,T)} \leq c^* \cdot h^{1/2}(\rho-\varepsilon,\kappa_n) \cdot \tilde{I}^{1/p}
\]
with
\[
\tilde{I} := \int_0^h \int \ldots \int_{Q^{n+1}(0, v\xi)} v^{-\left(1+|\kappa|\right)+\frac{p}{2}(\rho-\varepsilon,\kappa_n)} |\tilde{Q}^{n+1}(0, v\xi)| \cdot \int \ldots \int_{Q^{n+1}(a, b(v))} z_n^{\varepsilon p} \cdot |\partial_i^l f(z)|^p \, dz \, dv,
\]
where $a := (-\lambda \mathbf{1}', 0, 0)$, $b(v) := (\lambda \mathbf{1}', v\kappa, v\kappa, T + v)$; since $b(v) \leq b(h)$, we can continue

\[
\tilde{I} \leq \int_0^h v^{-1+h} \cdot \frac{p}{2}(\rho-\varepsilon,\kappa_n) \, dv \int \ldots \int_{Q^{n+1}(a, b(h))} z_n^{\varepsilon p} \cdot |\partial_i^l f(z)|^p \, dz
\]
\[
\leq c^* \cdot h^{(\rho-\varepsilon,\kappa_n)\cdot p/2} \int_0^{h\kappa n} z_n^{\varepsilon p} \cdot \varphi(z_n) \, dz_n
\]
with $\varphi(z_n) := \|\partial_i^l f(\cdot, z_n, \cdot)\|^p_{p, Q^{-\lambda(0,T)}}$ by Fubini’s theorem and since $h \leq T$; consequently, by (2.6), (2.9) and the last line

\[
(2.10) \quad |\gamma H_2|_{L^{0,\rho}_{p}(Q^{-\lambda(0,T))}} \leq
\leq c^* \cdot \int_0^T h^{-\left(1+P\rho-\varepsilon,\kappa_n\right)} \int_0^{h\kappa n} z_n^{\varepsilon p} \cdot \varphi(z_n) \, dz_n \, dh
\]
The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_x f \in W^{1-1/p,1/2-1/2p}_{p'}(\partial \Omega_T)$ revisited

and by the version of Hardy’s inequality from Lemma, (i) in the Appendix

\[\leq c^* \cdot (p \cdot \varepsilon \cdot \kappa_n)^{-1} \cdot \int_0^{T \cdot \varepsilon} \varphi(z_n) \, dz_n \]

\[= c^* \cdot (p \cdot \varepsilon \cdot \kappa_n)^{-1} \cdot \| \partial_i^l f \|^p_{p', Q^n((\lambda T', 0), (\lambda T'+TZ', T^{1/2}))} \times (0,2T) \]

which is the desired result for $H^2_{(i)}$.

Finally, let us turn to $H^3_{(i)}$; we again use (2.3) and observe that the correct expression for $\partial_t (\gamma H^3_{(i)})$ is obtained just by replacing K_i (in the definition of $H^3_{(i)}$) by $\partial_{n+1} K_i$ (integrate by parts); after estimating $|\partial_{n+1} K_i|$ according to (1.3), we arrive at

\[(2.11) \quad |\partial_t (\gamma H^3_{(i)})(x', t)| \leq \]

\[\leq c^* \cdot \int_h^T v^{-(1+|\kappa|+\frac{1}{2}+\varepsilon \cdot \kappa_n)} \left(\prod_{n+1} y_n^{\varepsilon \cdot \kappa_n} \cdot |\partial_i^{l_i} f((x', 0, t) + y)| \right) \, dy \, dv \]

(cp. (2.7); here the v-exponent is smaller by one, since $\partial_{n+1} K_i$ entails (in (1.3)) the additional factor v^{-1}); in the last integral we write the integrand in the form

\[\{ v^{-\frac{1}{p'}}(1+|\kappa|)-(1-\rho-\delta) \} \cdot \{ v^{-\frac{1}{p}}(1+|\kappa|)-\varepsilon \cdot \kappa_n \cdot \} y_n^{\varepsilon \cdot \kappa_n} \cdot |\partial_i^{l_i} f((x', 0, t) + y)| \}

(note that $-\frac{1}{2} = \frac{1}{2p} + \rho - 1$), where we introduced $\delta \in (0, 1 - \rho)$. Now apply Hölder’s inequality (with p', p) in y-v space and get

r.h.s. in (2.11) $\leq c^* \cdot \left(\int_h^T v^{-1-p'(1-\rho-\delta)} \, dv \right)^{1/p'} \cdot J^{1/p}$

with

\[J := \int_h^T v^{-(1+|\kappa|+\frac{1}{2})-p(\varepsilon \cdot \kappa_n+\delta)} \left(\prod_{n+1} y_n^{\varepsilon \cdot \kappa_n} \cdot |\partial_i^{l_i} f((x', 0, t) + y)| \right) \, dy \, dv ; \]

proceeding as in the argument leading from (2.8) to (2.9), the last estimate allows us to conclude

$\| \partial_t (\gamma H^3_{(i)}) \|^p_{p', Q^{n-1}(\lambda) \times (0,T)} \leq$

\[\leq c^* \cdot h^{-1(1-\rho-\delta)} \cdot \left(\int_h^T v^{-1-p(\varepsilon \cdot \kappa_n+\delta)} \left(\int_0^{r \cdot \varepsilon} \varphi(z_n) \, dz_n \right)^{1/p} \right) \]

with $\varphi(\cdot)$ as before (since $v \leq T$); by (2.3)

\[|\gamma H^3_{(i)}|^p_{L^0_p(Q^{n-1}(\lambda) \times (0,T))} \leq c^* \cdot \int_0^T h^{-1+\rho\delta} \left(\int_h^T v^{-1-p(\varepsilon \cdot \kappa_n+\delta)} \left(\int_0^{r \cdot \varepsilon} \varphi(z_n) \, dz_n \right) \right) \, dh \]

\[\leq c^* \cdot (p \cdot \delta)^{-1} \cdot \int_0^T v^{-1-p \cdot \varepsilon \cdot \kappa_n} \left(\int_0^{r \cdot \varepsilon} \varphi(z_n) \, dz_n \right) \, dv \]

by Appendix, Lemma (ii); now we may continue as after (2.10) and the desired result for $H^3_{(i)}$ follows.

Thus (2.1) is proved for all $T \leq T_0(\lambda) = \lambda^2$.
Appendix.

We note a version of Hardy’s inequality.

Lemma. Suppose that \(f \in L^1(0,T^\gamma) \) is nonnegative, \(0 < T \leq \infty ; \varepsilon, \gamma > 0 \). Then

\[
\text{(i)} \int_0^T x^{-1-\varepsilon-\gamma} f^\gamma dy dx \leq (\gamma \cdot \varepsilon)^{-1} \int_0^T f^\gamma dy,
\]

\[
\text{(ii)} \int_0^T x^{-1+\varepsilon-\gamma} \int_x^y y^{-\varepsilon} f(y) dy dx \leq (\gamma \cdot \varepsilon)^{-1} \int_0^T f(y) dy.
\]

Proof: These inequalities are proved in BESOV/ IL’IN/ NIKOL’SKII [B/I/N, 2.15, p. 28] (even in a more general form) for \(T = \infty \). For \(T \) finite they follow easily by applying the version for \(T = \infty \) to the extension by zero of \(f \) to \(\mathbb{R}^+ \). □

References

University of Bayreuth, Faculty of Mathematics and Physics, P.O.Box 101251, 8580 Bayreuth, Federal Republic of Germany

(Received August 6, 1990)