Sets invariant under projections onto
two dimensional subspaces

SIMON FITZPATRICK, BRUCE CALVERT

Abstract. The Blaschke–Kakutani result characterizes inner product spaces \(E \), among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace \(F \) there is a norm 1 linear projection onto \(F \). In this paper, we determine which closed neighborhoods \(B \) of zero in a real locally convex space \(E \) of dimension at least 3 have the property that for every 2 dimensional subspace \(F \) there is a continuous linear projection \(P \) onto \(F \) with \(P(B) \subseteq B \).

Keywords: inner product space, two dimensional subspace, projection

Classification: 46C05, 52A15

1. Introduction.

As mentioned in the summary, if \(B \) is the closed unit ball in a normed space \(E \) and for every 2 dimensional subspace \(F \) there is a linear projection \(P \) of \(E \) onto \(F \) with \(P(B) \subseteq B \), then the norm is given by inner product, as explained in Chapter 12 of Amir’s book [1]. A natural question is to see, if there are other sets \(B \) such that for every 2 dimensional \(F \) there is a linear projection onto \(F \) under which \(B \) is invariant, or whether we characterize the ball in an inner product space by this property, among a wider class of sets \(B \).

Restricting ourselves to closed neighborhoods of zero, we find \(B \) is the inverse image under a continuous linear map of: a closed neighborhood of 0 in \(\mathbb{R} \), a unit ball in \(\mathbb{R}^2 \), or a unit ball in an inner product space.

The reader will note that a similar problem motivates the paper [3].

2. Two dimensional results.

The following result appears as Theorem 8 of [3].

Lemma 2.1. Let \(B \) be a closed nonempty subset of \(\mathbb{R}^2 \) and suppose there is \(w \in \mathbb{R}^2, w \neq 0 \) and \(\lambda_n \to \infty \), such that \(\lambda_n^{-1}w \in B \) or \(\lambda_n w \notin B \). For every one dimensional subspace \(m \), there exists a linear projection \(P : \mathbb{R}^2 \to m \) with \(P(B) \subseteq B \) iff \(B \) is one of:

(a) a subset, containing 0, of a line through 0,
(b) a union of parallel lines, containing 0,
(c) a bounded convex symmetric neighborhood of 0.
Lemma 2.2. Let B be a closed subset of \mathbb{R}^2 such that for any vertical line $x = c$ there is a $v \in \mathbb{R}^2$ such that projecting affinely onto $x = c$ along $\mathbb{R}v$ takes B to B. Then B is either

(a) a union of lines, all parallel, or

(b) the epigraph of a convex function $h : \mathbb{R} \to \mathbb{R}$, or the negative of such a set.

Proof: One possibility is that B is empty. Otherwise, we consider two cases, depending on whether $\text{cocl}(B)$ is equal to \mathbb{R}^2 or not.

(a) $K = \text{cocl}(B) \neq \mathbb{R}^2$. Suppose u is an extreme point of K. We claim $u \in B$. For if not, take $B(u, r) \subseteq B'$, $r > 0$, with $\partial B(u, r)$ intersecting ∂K in two points u and w, noting $K \neq \{u\}$ since B intersects every vertical line. Now $u \notin \text{aff} v, w$, since it is extreme, so u is in the open half space given by $\text{aff}\{v, w\}$ which does not intersect B. This contradicts $u \in \text{cocl}(B)$.

Suppose $(a, b) \in \mathbb{R}^2$ is a point in ∂K. To fix ideas, suppose $c < b$ implies $(a, c) \notin K$, by relabelling the y axis. Suppose there is a nonempty open interval $(e, f) \subseteq (b, \infty)$ with $(a, g) \notin B$, if $g \in (e, f)$. Then projecting onto $\{(x, y) : x = a\}$ along a line of slope $\alpha(a)$ gives the open strip $\{(x, y) \in \mathbb{R}^2 : y \in (e, f) + \alpha(a)(\alpha - a)\} \subseteq B'$.

Suppose for the purpose of obtaining a contradiction that this intersects ∂K. Points in the intersection must be nonextreme points, giving a nonempty open line interval in $\partial K \cap B'$, having slope β say. Taking $(p, q) \in \mathbb{R}^2$ in this interval, a projection onto $x = p$ taking B to B must be along the line with slope β. But there is an end of the closed line segment in ∂K with slope β which must be an extreme point, hence in B, and which projects onto (p, q), a contradiction.

Hence either ∂K has slope $\alpha(a)$, or $(a, c) \in B$ for all $c > b$. In the first case, projecting onto any line $x = c$, taking B to B, must take ∂K to ∂K and be along the line slope $\alpha(a)$, giving B as the union of lines with slope $\alpha(a)$. In the second case, B being closed is equal to K, which is the epigraph of a convex function from \mathbb{R} to \mathbb{R}. Without our assumption that the lower half of $x = a$ was in B' we could reverse the direction of the y axis to give B as the negative of such an epigraph.

(b) $\text{cocl}(B) = \mathbb{R}^2$. If a whole vertical line is in B, then $B = \mathbb{R}^2$. Suppose now that for all $c \in \mathbb{R}$, if $S(c) = \{y : (c, y) \in B\}$ then $S(c) \neq \mathbb{R}$. Note for all c, $S(c)$ is not bounded above or below. We have for all $c, \alpha(c)$ such that for all d,

\[(1) \quad S(d) + \alpha(c)(c - d) \subseteq S(c).\]

We take two cases, depending on whether α is either nondecreasing or nonincreasing, or not. If α is nonincreasing, by renaming we may assume it is nondecreasing.

(b1) α is nondecreasing. We define $p(x) = \int_0^x \alpha(x) \, dx$, which gives the epigraph H of p of a closed convex set such that for all c and d, $S(d) + \alpha(c)(c - d) \subseteq S(c)$.

Since $S(c) \neq \mathbb{R}$ and $S(c)$ is not bounded above or below for all c, $S(c)$ has more than one component, so that there is a bounded open interval (d, e) in $S(c)'$, with the points (c, d) and (c, e) in B. Let H_b be a vertical translate of H with $(c, d) \in H_b$. Now $H_b \cap B$ is invariant under projections onto lines $x = c$ along lines with slope $\alpha(c)$, and by (a), since $(c, (d + e)/2) \notin B$, $H_b \cap B$ is a union of lines, with slope α.
say. Thus the line through \((c, d)\) with slope \(\alpha\) is in \(\partial K\), and so \(\alpha(d) = \alpha\) for all \(d\). Hence, by (1), since \(S(d) + \alpha(c - d) \subseteq S(c)\) and \(S(c) + \alpha(d - c) \subseteq S(d)\), we have \(S(d) + \alpha(c - d) = S(c)\) and \(B\) is a union of lines with slope \(\alpha\).

(b2) There are \(z, y, w \in \mathbb{R}, z < y < w\), such that \(\alpha(z) > \alpha(y) < \alpha(w)\). (If we had \(\alpha(z) < \alpha(y) > \alpha(w)\), we could relabel the \(y\) axis to obtain this assumption.) By (1), \(S(w) + \alpha(y)(y - w) \subseteq S(y)\), and \(S(y) + \alpha(w)(w - y) \subseteq S(w)\), so \(S(y) + (\alpha(w) - \alpha(y))(w - y) \subseteq S(y)\). Let \(x_1 = (\alpha(w) - \alpha(y))(w - y) > 0\). Let \(x_2 = (\alpha(z) - \alpha(y))(z - y) > 0\). We have two cases; \(x_1/x_2\) is rational or irrational.

(b2a) \(x_1/x_2 \in \mathbb{Q}\). Let \(x_1 = kd, x_2 = hd, k, h \in \mathbb{N}, d > 0\). Then \(s(y) - khd \subseteq S(y)\) and \(S(y) + khd \subseteq S(y)\). Hence the map \(x \to x + khd\) is onto \(S(y)\), since \(x \in S(y)\) gives \(x = (x - khd) + (khd)\). Now let \(g : S(y) \to S(w)\) be given by \(z = g(z) + \alpha(y)(w - y)\), and let \(f : S(w) \to S(y)\) be given by \(x = f(x) + \alpha(w)(y - w)\). The map \(x \to x + khd\) is the composite \((f \circ g)^k\), so \(g\) and \(f\) are bijections,

\[
S(w) = S(y) + \alpha(y)(w - y).
\]

(b2b) \(x_1/x_2 = \alpha \notin \mathbb{Q}\). There are sequences \(n_i, m_i\) in \(\mathbb{N}\) with \(|n_i \alpha - m_i| \leq \frac{1}{n_i}\). So \(y \to y + \alpha x_2\) and \(y \to y - x_2\) take \(S(y)\) to \(S(y)\). Hence for \(y \in S(y), y_i = y - m_i x_2 + (n_i - 1)x_1 \in S(y)\) and \(y_i \to y - x_1\), giving \(y - x_1 \in S(y)\) since \(S(y)\) is closed. Hence, as in (b2a), the map \(g : S(y) \to S(w)\) is a bijection, or \(S(w) = S(y) + \alpha(y)(w - y)\), so (2) holds for all \(x_1\) and \(x_2\). We either have: (c) for all \(z < y, \alpha(z) > \alpha(y)\), or (d) there is \(z_0 < y, \alpha(z_0) < \alpha(y)\). In case (d) we have for all \(w > y\), (2) holds, by using \(z\) above, if \(\alpha(w) > \alpha(y)\) and \(z_0\), if \(\alpha(w) < \alpha(y)\), and noting (2) holds, if \(\alpha(w) = \alpha(y)\). And in case (c), we replace (2) by \(S(z) = S(y) + \alpha(y)(w - y)\) for all \(z < y\). In case (d), we have \(\alpha(w) = \alpha(y)\) for \(w > y\) and in case (c) we have \(\alpha(z) = \alpha(y)\) for all \(z < y\), a contradiction to (b2).

3. Three dimensional results.

Lemma 3.1. Let \(B\) be a closed subset of \(\mathbb{R}^3\), \(N\) a two dimensional subspace, \(d \in \mathbb{N}, d \neq 0\). Suppose any plane \(M\) containing 0 but not \(\mathbb{R}d\) is the range of a projection \(P\) with \(P(B) \subseteq B\) and \(P(N) \subseteq N\). Then \(B\) is a union of translates of \(\mathbb{R}d\), or \(B \subseteq N\).

Proof: Let \(b \in B \setminus N\). Any line \(m\) in \(b + N\) not parallel to \(\mathbb{R}d\) is the range of an affine projection in \(b + N\). By Lemma 1.2, \(B \cap (b + N)\) is a union of parallel lines or a convex set \(K_b \neq b + B\) intersecting every translate of \(m\) in \(b + N\). Supposing the latter and not the former, we have a contradiction by taking \(m\) to be a supporting line to \(K_b\) not parallel to \(\mathbb{R}d\). Hence \(B \cap (b + N)\) is a union of translates of a line \(k\) in \(b + N\). If \(k\) is not parallel to \(\mathbb{R}d\) and \(B \cap (b + N) \neq b + N\), we may take a translate of \(k\) contained in the complement of \(B\) in \(b + N\), to obtain a contradiction.

The following result of Blaschke is proved simply in [2, Lemma 1] except that \(p\) is assumed to be a norm.
Lemma 3.2. Let X be a real three dimensional normed space with the basis \{\(e_1, e_2, e_3\)\}, where \(e_i\) is a unit vector. Suppose every two dimensional subspace which contains \(e_1\) is the range of a nonexpansive projection along a vector in span \{\(e_2, e_3\)\}. Then there is a function \(F : \mathbb{R}^2 \to \mathbb{R}\) such that for all \(x_i \in \mathbb{R}\), \(\|x_1 e_1 + x_2 e_2 + x_3 e_3\| = F(x_1, \|x_2 e_2 + x_3 e_3\|)\).

Theorem 3.3. Let B be a closed neighborhood of 0 in \mathbb{R}^3. For all planes M through 0, there exists a linear projection P of \mathbb{R}^3 onto M with $P(B) \subseteq B$ iff B is one of:

(a) the closed unit ball given by an inner product,
(b) a union of parallel planes,
(c) $K + \mathbb{R}v$, where K is a bounded convex symmetric neighborhood of 0 in a plane M through 0 and $\mathbb{R}v$ is a line not in M.

Proof: We let $C = \text{cocl}(B)$ and consider four distinct cases:

(i) C contains no lines,
(ii) C contains a line but no planes,
(iii) C contains a plane by not \mathbb{R}^3,
(iv) $C = \mathbb{R}^3$.

(i) Let $D = C \cap -C$. Then D is a closed convex bounded symmetric neighborhood of 0, invariant under projections onto all 2 dimensional subspaces, and hence the unit ball given by an inner product, by the Blaschke–Kakutani theorem.

Take any 2 dimensional subspace M, and consider $\partial D \cap M$ and $\partial C \cap M$. Let $\mathbb{R}e$ be perpendicular to M under the inner product. Any plane through $\mathbb{R}e$ is the range of a projection taking C to C, hence D to D, hence is along a direction in M. We can parametrize $\partial D \cap M$ and $\partial C \cap M$ to give radius $d(\theta)$ and $c(\theta)$ say as functions of angle θ; these functions are absolutely continuous and their derivative is equal for angles, where $d(\theta)$ and $c(\theta)$ have a unique tangent, i.e. almost everywhere. Hence, if $d(\theta)$ and $c(\theta)$ are equal to θ_0, they are equal near θ_0, and $M \cap \partial C \cap \partial D$ is open in $M \cap \partial D$. Since $M \cap \partial C \cap \partial D$ is also closed in $M \cap \partial D$, and nonempty, and $M \cap \partial D$ is connected, $M \cap \partial C = M \cap \partial D$. Hence $C = D$.

We claim $B = D$. If $x \in \partial D$, but $x \notin B$, then $x \notin \text{cocl}(B)$, a contradiction, giving $\partial D \subseteq B$. If $x \in \text{int}(D)$, take P a projection onto M, a 2 dimensional subspace containing x, with $P(B) \subseteq B$. Then $x \in P(\partial D) \subseteq B$. Hence $D \subseteq B$, giving $B = D$.

(ii) C may be represented as $K + \mathbb{R}v$, where K is a closed convex set, not containing a line, in a plane M, and $v \notin M$. All projections onto planes not containing $\mathbb{R}v$ are along $\mathbb{R}v$, so $B \setminus \mathbb{R}v$ is a union of lines parallel to $\mathbb{R}v$. Let $B_1 = B \cup \mathbb{R}v$. Now in $\mathbb{R}^3/\mathbb{R}v$, we have all lines through 0 being the range of a projection taking the quotient $B_1/\mathbb{R}v$ to itself.

By Lemma 1.1 and our hypotheses, it must be a closed bounded convex symmetric neighborhood of 0. Hence $B_1 = K + \mathbb{R}v$, with K a closed bounded symmetric convex neighborhood of 0 in M, $v \notin M$. Hence, $\mathbb{R}v \subseteq B$, and $B = K + \mathbb{R}v$.

(iii) Let N be a plane through O with a translate of N contained in c. Now any plane M through O, $M \neq N$, is the range of projection along a direction in N.

Hence for \(b \in B \setminus N \), any line \(b + N \) is the range of an affine projection in \(b + N \) taking \(B \) to \(B \).

By Lemma 1.2, \(B \cap (b + N) \) is a convex set not equal to \(b + N \) but meeting all lines, which is impossible, or is a union of parallel lines. Hence \(b + N \subseteq B \).

(iv) We assume \(B \) is not a union of parallel planes.

(a) We claim that for any line \(\mathbb{R}w, w \neq 0 \), and any \(M \in \mathbb{R}, B \) intersects \((M, \infty)w \).

For, take a plane \(\mathbb{R}w + \mathbb{R}v \), and project onto it along \(u \). Suppose we project onto \(\mathbb{R}w + \mathbb{R}u \) along \(y \). \(B \) intersects \((M, \infty)w + \mathbb{R}y + \mathbb{R}u \). Projecting onto \(\mathbb{R}w + \mathbb{R}u \) gives \((M, \infty)w \) intersecting \(B \).

(b) Since \(B \neq \mathbb{R}^3 \), take \(a \in B', a \neq 0 \). Take a plane \(N \) through \(\mathbb{R}a \), and project along \(b \), so \(B(a, \delta) + \mathbb{R}b \subseteq B' \). Take the plane \(\mathbb{R}a + \mathbb{R}b \) and project along \(c \) onto it. For \(\delta > 0 \) small, \(B(a, \delta) + \mathbb{R}b + \mathbb{R}c \subseteq B' \). Let us call the set between two parallel planes a "slice".

(c) We claim there is a basis \((f_1, f_2, f_3)\) and a nonempty open ball \(\mathbb{B}(c, \delta) \) with the three slices \(\mathbb{B}(c, \delta) + \mathbb{R}f_1 + \mathbb{R}f_2, \mathbb{B}(c, \delta) + \mathbb{R}f_2 + \mathbb{R}f_3, \mathbb{B}(c, \delta) + \mathbb{R}f_1 + \mathbb{R}f_3 \) all contained in \(B' \). Since we are assuming \(B \) is not a union of parallel lines, take the slice \(B(a, \delta) + M \subseteq B', \delta > 0, M \) on a plane through \(0 \) and by Lemma 3.1 take \(N \neq M \) a plane through \(0 \) with projection along \(r \notin M \). By Lemma 3.1, take \(Q \) another plane through \(0 \), not containing \(N \cap M \), with projection along \(s \notin M \). Let \(c \) be the point of intersection of \(a + M, N \) and \(Q \). We take the three planes through \(c: c + M, c + \mathbb{R}r + (M \cap N), c + \mathbb{R}s + (M \cap Q) \). These are all contained in \(B' \), together with slices containing them, and the intersection is \(\{c\} \). Together they give \(f_i \) as required.

(d) We claim there is a sequence of projections \(P_n \) onto planes through \(0 \) with \(\|P_n\| \to \infty \). Assume by renaming that \(c \) is the positive octant. For \(\delta > 0 \), let \(f_\delta = f_3^* - \delta(f_1^* + f_2^*) \), where \((f_1^*, f_2^*, f_3^*)\) is the dual basis to \((f_1, f_2, f_3)\).

Suppose there is \(\delta > 0 \) with \(\{x = (f_\delta, x) \geq 0\} \cap B \cap \{x: x_1 \geq c_1, x_2 \geq c_2, x_3 \leq c_3\} \) nonempty. Then by compactness there is an maximal such \(\delta \), \(d(\max) \), and an \(e \in B \) with \((f_\delta(\max), e) = 0, e_1 \geq c_1, e_2 \geq c_2, e_3 \leq c_3 \). For \(\delta > d(\max) \) there is no such \(e \). If there is no \(\delta > 0 \), take \(d(\max) = 0 \) and in this case by (a) there is \(e \in B \) with \(e_1 \geq c_1, e_2 \geq c_2 \) and \(e_3 = 0 \).

Let \(\delta(n) = d(\max) + \) and let \(P_n \) be a projection on \(N(f_\delta(n)) \). If \(P_{n(m)} \) is a bounded subsequence, then \(P_{n(m)}e \to e \), giving \(P_{n(m)}e \) in \(B \), with \((P_{n(m)}e_1) \geq c_1, (P_{n(m)}e_2) \geq c_2, (P_{n(m)}e_3) \leq c_3 \), contradicting the maximality of \(d(\max) \). Hence \(\|P_n\| \to \infty \).

(e) We derive a contradiction, showing \(B \) is a union of parallel lines. Since \(\|P_n\| \to \infty \), and \(P_n(B) \) contains the symmetric convex set \(P_nB(0, \varepsilon) \) for some \(\varepsilon > 0 \), we have \(P_n(B) \) intersecting \(c + \mathbb{R}f_i + \mathbb{R}f_j \) for \(n \) large, for some \(i \) and \(j \).

(f) We claim \(B \) is a union of parallel planes. Since \(B \) is a union of parallel lines, there is \(q \neq 0 \), so \(B \) is a union of translates of \(\mathbb{R}q \). By 2.1 applied to \(\mathbb{R}^3/\mathbb{R}q \), we have \(B/\mathbb{R}q \) a union of parallel lines, since its convex closure is \(\mathbb{R}^3/\mathbb{R}q \), and it is a neighborhood of \(0 \). This gives \(B \) a union of parallel planes. \(\square \)
4. Higher dimensions.

Theorem 4.1. Suppose B is a closed neighborhood of 0 in a real locally convex topological vector space X of dimension ≥ 3. For all two dimensional subspaces M there is a continuous linear projection P of X onto M with $P(B) \subseteq B$, iff B is the inverse image under a continuous linear map T of:

(a) the closed unit ball in an inner product H,
(b) the closed unit ball given by a norm on \mathbb{R}^2, or
(c) a closed neighborhood of 0 in \mathbb{R}.

Proof: \implies (1) We suppose that for all 3 dimensional subspaces F of X, $F \cap B$ is a union of parallel planes. We claim B is a union of parallel closed hyperplanes, so (c) holds.

For H a closed subspace of codimension ≥ 2 with $H \subseteq B$, we claim there is a closed subspace H_{+1} with $H_{+1} \subseteq B$ and H of codimension 1 in H_{+1}. Let H_{-1} be a closed subspace of H of codimension 1 and let E be a three dimensional subspace of X with $E \cap H_{-1} = \{0\}$. Let M be a two dimensional subspace of E contained in B. Given $h \in H_{-1}$, $h \neq 0$, $(\mathbb{R}h + M) \cap B$ is a union of translates of M, so $h + M \subseteq B$, giving $H_{-1} + M \subseteq B$. Take $H_{+1} = H_{-1} + M$. By Zorn’s lemma, a closed subspace H of codimension ≤ 1 in X is contained in B. If $x \in B \setminus H$, and $h \in H$, let E be a three dimensional space containing x, h and a two dimensional subspace M of H. Then $x + M \subseteq B$, giving $x + h \in B$. Thus for $x \in B, x + H \subseteq B$, and the claim is proved, $B = \cup \{x + H : x \in B\}$.

(2) We now suppose there exists a 3 dimensional subspace F_0 such that $F_0 \cap B$ contains no plane, and we suppose that for all three dimensional subspaces $F, F \cap B$ contains a line. We claim B is convex, contains a 2 codimensional closed subspace E, and with E_2 a complementary subspace, $B \cap E_2$ is a bounded symmetric neighborhood of 0 in E_2. We take $E_2 \subseteq F_0$ with $E_2 \cap B$ a bounded symmetric neighborhood K of 0. Let $e \in E_2, e \neq 0, B \cap \mathbb{R}e = \{\lambda e : |\lambda| \leq 1\}$.

B is convex since if $a, b \in B$, we take a 3 dimensional space G, containing a, b and e, and note that if $B \cap G$ is a union of planes, it is of the form $M + \lambda e, |\lambda| \leq 1$, and hence $B \cap G$ is convex.

Let H be a closed subspace of X, of codimension > 2, with $H \subseteq B$. Take $f \notin E_2 + H$. Now $(E_2 + \mathbb{R}f) \cap B$ contains a line Re say, giving $B \supseteq H + Re$ since it is closed and convex. Hence, by Zorn’s lemma there is a closed subspace E of codimension 2 with $E \subseteq B$.

Since B is closed and convex, $K + E \subseteq B$. Let $b \in B$, with $b = b_2 + b_e, b_2 \in E_2, b_e \in E$. We claim $b_2 \in K$. If $b_E \neq 0, B \cap (E_2 + \mathbb{R}b_E)$ is projected onto E_2 taking B to B, hence along b_E, and $b_2 \in K = B \cap E_2$. Thus $B = K + E$, giving (b).

(3) We suppose there exists a three dimensional subspace E_0 such that $E_0 \cap B$ contains no line. Now as in (2) we find B is convex, and the same idea gives B symmetric. By Zorn’s lemma, there is a maximal closed subspace $E \subseteq B$. Let $Q : X \to X/E$ be the projection. We see $Q(B)$ is convex, symmetric, and radial. If p is its Minkowski functional, by maximality of E, if $p(Qx) = 0$, then $Rx \in B$ and $x \in E$, so p is a norm.
We claim p is given by an inner product, by the Blaschke–Kakutani theorem. Let M be a 2 dimensional subspace of x/E and take N a two dimensional subspace of X with $QN = M$. Let R be a continuous projection of X onto N with $R(B) \subseteq B$. We define $P : X/E \to M$ by $P(Qx) = QR(x)$; this is well defined for if $Qx = 0$, then $x \in E$ giving $Rx \in E$ and $QRx = 0$. We see P maps $X/E \to M$ and is the identity on M and maps $Q(B)$ to $Q(B)$. Hence $Q(B)$ is the closed unit ball in an inner product space, $Q : X \to X$ is continuous and linear, and $B = Q^{-1}(Q(B))$ giving (a).

\leftarrow (a) Suppose (a) holds. Let M be a 2 dimensional subspace of X.

(i) Let TM be a 2 dimensional subspace of H. Let R be the projection on TM under which the unit ball $B[0,1]$ in H is invariant. Let $T|_M$ be the restriction, and define $P = (T|_M)^{-1}RT$. One checks P takes X to M, is the identity on M, is a continuous linear map and maps $B = T^{-1}(B[0,1])$ to itself.

(ii) Let TM be a 1 dimensional subspace of H. Take (e_1, e_2) a basis of $M, Te_1 = 0$. Let $S : X \to M$ be a continuous projection, $Sx = x_1(x)e_1 + x_2(x)e_2$. Define $Px = (T|_{Re_2})^{-1}RTx + x_1(x)e_1$, where R is the projection on TM leaving $B[0,1]$ invariant.

(iii) Let TM be 0 dimensional. Let $S : X \to M$ be as in (ii) and take $P = S$.

(b) Suppose (b) holds. Let M be a 2 dimensional subspace of X. Let $T : X \to \mathbb{R}^2$ be given, $B[0,1]$ the unit ball in \mathbb{R}^2, and $B = T^{-1}B[0,1]$.

(i) Let $TM = \mathbb{R}^2$. Define $P = (T|_M)^{-1}T$.

(ii) Let TM be 1 dimensional. Let R be the projection on \mathbb{R}^2 of TM leaving $B[0,1]$ invariant, and define P as in (a)(ii).

(iii) Let TM be 0 dimensional. Define P as in (a)(iii).

(c) Suppose (c) holds. Let M be a two dimensional subspace of X. Let $T : X \to \mathbb{R}^2$ be given, A a closed neighborhood of 0 in \mathbb{R} and $B = T^{-1}(A)$.

(i) Let $T(Rm) = \mathbb{R}, m \in M$. Define $P = (T|_{Rm})^{-1}T$.

(ii) Let $T(M) = 0$. Define P as in (a)(ii).

\[\square \]

References

Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand

(Received January 14, 1991)