Cellularity of a space of subgroups of a discrete group

A. Leiderman, I.V. Protasov

Abstract. Given a discrete group G, we consider the set $\mathcal{L}(G)$ of all subgroups of G endowed with topology of pointwise convergence arising from the standard embedding of $\mathcal{L}(G)$ into the Cantor cube $\{0, 1\}^G$. We show that the cellularity $c(\mathcal{L}(G)) \leq \aleph_0$ for every abelian group G, and, for every infinite cardinal τ, we construct a group G with $c(\mathcal{L}(G)) = \tau$.

Keywords: space of subgroups, cellularity, Shanin number

Classification: 54B20, 54A25

Let G be a discrete group and exp G the set of all subsets of G. We identify exp G with the Cantor cube $\{0, 1\}^G$ and consider the set $\mathcal{L}(G)$ of all subgroups of G as a subspace of $\{0, 1\}^G$. Let $\mathcal{F}(G)$ be the family of all finite subsets of G. Given any $F, H \in \mathcal{F}(G)$, we put

$$[F, G \setminus H] = \{A \in \mathcal{L}(G) : F \subseteq A \subseteq G \setminus H\}.$$

Then the family $\{[F, G \setminus H] : F, H \in \mathcal{F}(G)\}$ forms a base of the topology in $\mathcal{L}(G)$. It is easy to see that $\mathcal{L}(G)$ is a zero-dimensional compact space.

We denote by $c(X)$ the cellularity of a topological space X. Remind that $c(X)$ is the supremum of cardinalities of disjoint families of open subsets of X.

We say that a topological space X has Shanin number ω (see [4] or [1, Problem 2.7.11]) if any uncountable family \mathcal{U} of non-empty open subsets of X has an uncountable subfamily $\mathcal{V} \subseteq \mathcal{U}$ with $\bigcap \mathcal{V} \neq \emptyset$. Evidently, if a space X has Shanin number ω then $c(X) \leq \aleph_0$.

Given any topological group G, we denote by $L(G)$ the space of all closed subgroups of G endowed with the Vietoris topology. By [3, Theorem 2], $c(L(G)) \leq \aleph_0$ for every compact group G.

Theorem 1. For every discrete abelian group G, the space $\mathcal{L}(G)$ has Shanin number ω, in particular, $c(\mathcal{L}(G)) \leq \aleph_0$.

Proof: By [6, Theorem 24.1], G is a subgroup of some divisible group D. By [6, Theorem 23.1], D is a direct sum $\bigoplus_{\alpha \in I} G_\alpha$ of some family of countable groups.

The first author was partially supported by the Israel Science Foundation Grant no. 508/06.
Thus we suppose that G is a subgroup of $\bigoplus_{\alpha \in I} G_\alpha$. Let $\{U_\beta : \beta \in J\}$ be an uncountable family of non-empty open subsets of $L(G)$. For every $\beta \in J$, we pick finite subsets F_β, H_β of G such that $\emptyset \neq [F_\beta, G \setminus H_\beta] \subseteq U_\beta$, and put

$$K_\beta = \{\alpha \in I : \text{pr}_\alpha g \neq 0 \text{ for some } g \in F_\beta \cup H_\beta\}.$$

Then $\{K_\beta : \beta \in J\}$ is an uncountable family of finite subsets of I. By the \Delta-Lemma, there exist an uncountable subset $J_1 \subseteq J$ and a finite subset $K \subseteq I$ such that $K_\beta \cap K_\gamma = K$ for all distinct $\beta, \gamma \in J_1$. We put

$$G_K = \{g \in G : \text{pr}_\alpha g = 0 \text{ for every } \alpha \notin K\}.$$

For every subset X of G, we denote by $\langle X \rangle$ the subgroup of G generated by X. Every subgroup of a finitely generated abelian group is finitely generated, hence it follows that for every $\beta \in J_1$, the subgroup $\langle F_\beta \rangle \cap G_K$ is finitely generated. Since G_K is a countable group, there are countably many finitely generated subgroups of G_K, and therefore there exist an uncountable subset $J_2 \subseteq J_1$ and a subgroup $A \subseteq G_K$ such that $\langle F_\beta \rangle \cap G_K = A$ for every $\beta \in J_2$. We put $S = \langle \bigcup_{\beta \in J_2} F_\beta \rangle$ and prove that $S \in \bigcap_{\beta \in J_2}[F_\beta, G \setminus H_\beta]$. It suffices to show that $H_\beta \cap S = \emptyset$ for every $\beta \in J_2$.

Pick any element $g \in S$ and fix $\beta \in J_2$. Clearly, if $g = 0$ then $g \notin H_\beta$ because of $0 \in \langle F_\beta \rangle$ and $\emptyset \neq [F_\beta, G \setminus H_\beta]$. If $g \neq 0$, we can write g as

$$g = g_{\alpha_1} + \cdots + g_{\alpha_n},$$

where $g_{\alpha_i} \in G_{\alpha_i} \setminus \{0\}$ for every $i \in \{1, \ldots, n\}$. If $\alpha_i \notin K_\beta$ for some $i \in \{1, \ldots, n\}$ then, by definition of K_β, we have $g \notin H_\beta$.

Now consider the possibility of $\{\alpha_1, \ldots, \alpha_n\} \subseteq K_\beta$. We claim that in this case $g \in \langle F_\beta \rangle$. Let us assume the contrary, $g \notin \langle F_\beta \rangle$.

By the choice of J_2, we have $\langle F_\beta \rangle \cap G_K = \langle F_\gamma \rangle \cap G_K$ for every distinct $\beta, \gamma \in J_2$, therefore by definition of S, there exist $\gamma \in J_2 \setminus \{\beta\}$ and $j \in \{1, \ldots, n\}$ such that $\alpha_j \in K_\gamma \setminus K$. On the other hand, $K_\beta \cap K_\gamma = K$, hence $\alpha_j \notin K_\beta$, and we get a contradiction with $\{\alpha_1, \ldots, \alpha_n\} \subseteq K_\beta$. So, $g \in \langle F_\beta \rangle$ which implies that $g \notin H_\beta$.

Remind that a Hausdorff compact space X is called dyadic if X is a continuous image of some Cantor cube. If G is a compact abelian group, by [5, Theorems 3, 4], the space $L(G)$ is dyadic if and only if the weight $w(G) \leq \aleph_1$. A natural question arises to characterize discrete groups G for which $L(G)$ is a dyadic space.

Theorem 2. For a discrete abelian group G, the space $L(G)$ is dyadic if and only if $|G| \leq \aleph_1$.
Proof: By [2, Theorem 3], for every compact abelian group G the space $L(G)$ is homeomorphic to $\mathcal{L}(\hat{G})$, where \hat{G} is the dual group to G. Therefore, by Pontryagin’s duality and by above-mentioned [5, Theorems 3, 4], the space $\mathcal{L}(G)$ is dyadic if and only if $|G| \leq \aleph_1$.

Our last theorem shows that, in contrast to Theorem 1, there are non-abelian groups G with arbitrary large cellularity $c(\mathcal{L}(G))$.

Theorem 3. For every infinite cardinal τ there exists a discrete group G such that $c(\mathcal{L}(G)) = |G| = \tau$.

Proof: Let F be a free group generated by the set $\{x_\alpha, y_\alpha : \alpha < \tau\}$ of free generators. We shall define a group as the quotient $G = F/N$, where N is a certain normal subgroup of the free group F containing all the words x_α^2, y_α^2, $x_\beta x_\alpha x_\beta y_\alpha$, $\alpha < \beta < \tau$.

We fix $\alpha < \tau$ and put

$$A = \langle a_\alpha \rangle \times \langle b_\alpha \rangle, \quad B = \bigotimes_{\alpha < \beta < \tau} \langle c_\beta \rangle,$$

where $\langle a_\alpha \rangle, \langle b_\alpha \rangle, \langle c_\beta \rangle$ are the cyclic subgroups of order 2. Then we define a group G_α as the semidirect product $G_\alpha = A \rtimes B$ with $c_\beta a_\alpha c_\beta = b_\alpha$ for all $\alpha < \beta < \tau$. Let $f_\alpha : F \to G_\alpha$ be a homomorphism defined by the rule

$$f_\alpha(x_\lambda) = f_\alpha(y_\lambda) = 1 \quad \text{for all} \quad \lambda < \alpha,$$

$$f_\alpha(x_\alpha) = a_\alpha, \quad f_\alpha(y_\alpha) = b_\alpha,$$

$$f_\alpha(x_\beta) = f_\alpha(y_\beta) = c_\beta \quad \text{for all} \quad \alpha < \beta < \tau.$$

Finally, we define

$$N = \bigcap \{\ker f_\alpha : \alpha < \tau\}, \quad \text{and} \quad G = F/N.$$

Clearly, $f_\alpha(x_\lambda^2) = f_\alpha(y_\lambda^2) = 1$ for every $\lambda < \tau$, and it easily could be seen that $f_\alpha(x_\beta x_\alpha x_\beta) = f_\alpha(y_\lambda)$ for all $\lambda < \beta < \tau$. Hence, N is a normal subgroup of the free group F containing all the words x_α^2, y_α^2, $x_\beta x_\alpha x_\beta y_\alpha$, $\alpha < \beta < \tau$, but $x_\alpha y_\alpha x_\alpha y_\alpha^{-1} \notin N$. It follows that $x_\alpha N \neq 1$, $y_\alpha N \neq 1$, $x_\alpha N \neq y_\alpha N$ in the quotient group $G = F/N$. In the sequel we denote the cosets wN, i.e. the elements of the group G, simply by w.

In order to finish the proof of Theorem 3 we show that $c(\mathcal{L}(G)) = |G| = \tau$. Let us consider the family $\{\{x_\alpha\} \subseteq G \setminus \{y_\alpha\} : \alpha < \tau\}$ of non-empty open subsets of $\mathcal{L}(G)$, and show that this family is disjoint. We assume the contrary and choose α, β such that $\alpha < \beta < \tau$ and

$$\{\{x_\alpha\} \subseteq G \setminus \{y_\alpha\}\} \cap \{\{x_\beta\} \subseteq G \setminus \{y_\beta\}\} \neq \emptyset.$$

Then the subgroup $\langle x_\alpha, x_\beta \rangle$ generated by x_α, x_β is in the above intersection. On the other hand, $y_\alpha = x_\beta x_\alpha x_\beta$, so

$$y_\alpha \in \langle x_\alpha, x_\beta \rangle, \quad \langle x_\alpha, x_\beta \rangle \subseteq \{\{x_\beta\} \subseteq G \setminus \{y_\alpha\}\}$$

and we get a contradiction. \(\square\)
Question. Does there exist a nilpotent group \(G \) such that \(c(\mathcal{L}(G)) > \aleph_0 \) ?

REFERENCES

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, BEER SHEVA, ISRAEL

E-mail: arkady@math.bgu.ac.il

Taras Shevchenko Kyiv National University, Ukraine

E-mail: protasov@unicyb.kiev.ua

(Received September 20, 2007, revised March 21, 2008)