Some Characterizations of 0-Distributive Semilattices

H. S. Chakraborty and M. R. Talukder

Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh

Department of Mathematics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

1apu_012@yahoo.com, 2r.talukder-mat@sust.edu

Abstract. In this paper we discuss prime down-sets of a semilattice. We give a characterization of prime down-sets of a semilattice. We also give some characterizations of 0-distributive semilattices and a characterization of minimal prime ideals containing an ideal of a 0-distributive semilattice. Finally, we give a characterization of minimal prime ideals of a pseudocomplemented semilattice.

2010 Mathematics Subject Classification: 06A12, 06A99, 06B10

Keywords and phrases: Semilattices, distributive semilattice, 0-distributive semilattice, pseudocomplemented semilattice, ideal, filter.

1. Introduction

Semilattices have been studied by many authors. The class of distributive semilattices is an important subclass of semilattices. We refer the readers to [4, 9, 10] for distributive semilattices. We also refer the monograph [5] for the background of distributive semilattices. The class of 0-distributive semilattices is a nice extension of the class of distributive semilattices. This extension is useful for the study of pseudocomplemented semilattices. For pseudocomplemented semilattices we refer the readers to [2, 3, 5, 6]. We also refer the readers to [7, 8] for 0-distributive semilattices (see [1, 11] for 0-distributive lattices). In this paper we study 0-distributive semilattices. By semilattice we mean meet-semilattice.

A semilattice S with 0 is called 0-distributive if for any $a, b, c \in S$ such that $a \land b = 0 = a \land c$ implies $a \land d = 0$ for some $d \geq b, c$. The pentagonal lattice P_5 (see Figure 1) as a semilattice is 0-distributive but the diamond lattice M_3 (see Figure 1) as a semilattice is not 0-distributive. A semilattice S is called directed above if for all $x, y \in S$ there exists $z \in S$ such that $z \geq x, y$. Every 0-distributive semilattice is directed above.

Minimal prime ideals and maximal filters play an important role in semilattices. In Section 2, we introduce a notion of minimal prime down-set and maximal filters in semilattices. Here we give a characterization of minimal prime down-sets and maximal filters in semilattices.
Like as a distributive semilattice (or distributive lattice) Stone’s version separation theorem is not true for 0-distributive semilattice. For example, if we consider the pentagonal lattice P_5 (see Figure 1) as a 0-distributive semilattice, then $F = \{c\}$ is a filter and $I = \{a\}$, is an ideal such that $F \cap I = \emptyset$ but there is no prime filter containing F and disjoint from I.

In Section 3 we discuss Stone’s version separation theorem for 0-distributive semilattices. In this section we give some characterizations of 0-distributive semilattices.

In Section 4 we discuss the pseudocomplementation in semilattices. We close the paper with a characterization of a minimal prime ideals of a pseudocomplemented 0-distributive semilattice.

2. Prime down-sets and maximal filters

Let S be a semilattice. A non-empty subset D of S is called a down-set if $a \in D, b \in S$ with $b \leq a$ implies that $b \in D$. A down-set D of S is called a proper down-set if $D \neq S$. A prime down-set is a proper down-set P of S such that $a \wedge b \in P$ implies $a \in P$ or $b \in P$. A prime down-set P is called minimal if there is a prime down-set Q such that $Q \subseteq P$, then $P = Q$.

Theorem 2.1. Any prime down-set of a semilattice contains a minimal prime down-set.

Proof. Let S be a semilattice with 0. Let P be a prime down-set of S and let \mathcal{P} be the set of all prime down-sets contained in P. Then \mathcal{P} is non-empty since $P \in \mathcal{P}$. Let \mathcal{C} be a chain in \mathcal{P} and let

$$M := \bigcap \{X \mid X \in \mathcal{C} \}.$$

We claim that M is a prime down-set. Clearly M is non-empty as $0 \in M$. Let $a \in M$ and $b \leq a$. Then $a \in X$ for all $X \in \mathcal{C}$. Hence $b \in X$ for all $X \in \mathcal{C}$ as X is a down-set. Thus $b \in M$. Now let $x \wedge y \in M$ for some $x, y \in S$. Then $x \wedge y \in X$ for all $X \in \mathcal{C}$. Since X is a prime down-set for all $X \in \mathcal{C}$, we have either $x \in X$ or $y \in X$ for all $X \in \mathcal{C}$. This implies that either $x \in M$ or $y \in M$. Hence M is a prime down-set.

Thus by applying the dual form of Zorn’s Lemma to \mathcal{P}, there is a minimal member of \mathcal{P}.

Let S be a semilattice. A non-empty subset F of S is called a filter if

(i) $a, b \in F$ implies $a \wedge b \in F$

(ii) $a \in S, b \in F$ with $a \geq b$ implies $a \in F$.

![Figure 1. 0-distributive and non-0-distributive semilattices](image-url)
A filter F of a semilattice S is called a **proper filter** if $F \neq S$. A **maximal filter** F of S is a proper filter which is not contained in any other proper filter, that is, if there is a proper filter G such that $F \subseteq G$, then $F = G$.

Following result is due to [8].

Lemma 2.1. Let M be a proper filter of S with 0. Then M is maximal if and only if for all $a \in S \setminus M$, there is some $b \in M$ such that $a \wedge b = 0$.

Now we have the following result.

Theorem 2.2. Let F be a non-empty proper subset of a semilattice S. Then F is a filter if and only if $S \setminus F$ is a prime down-set.

Proof. Let F be a filter of a semilattice S. Let $x \in S \setminus F$ and $y \leq x$. Then $x \notin F$ and hence $y \notin F$ as F is a filter. This implies $y \in S \setminus F$. Thus $S \setminus F$ is a down-set. Since F is a filter $S \setminus F \neq S$. Thus $S \setminus F$ is a proper down-set. To prove $S \setminus F$ is a prime down-set, let $a, b \in S$ such that $a \wedge b \in S \setminus F$. Then $a \wedge b \notin F$ and hence either $a \notin F$ or $b \notin F$ as F is filter. This implies either $a \in S \setminus F$ or $b \in S \setminus F$. Therefore, $S \setminus F$ is a prime down-set.

Conversely, let $S \setminus F$ be a prime down-set and $x, y \in F$. Then clearly, $x, y \notin S \setminus F$ and hence $x \wedge y \notin S \setminus F$ as $S \setminus F$ is a prime down-set. Thus $x \wedge y \notin F$. Suppose $x \in F$ and $x \leq y$. Then $x \notin S \setminus F$. Since $S \setminus F$ is a down-set, we have $y \notin S \setminus F$. Hence $y \in F$. This implies F is a filter.

Theorem 2.3. Let F be a non-empty subset of a semilattice S. Then F is a maximal filter if and only if $S \setminus F$ is a minimal prime down-set.

Proof. Let F be a maximal filter and $S \setminus F$ is not a minimal prime down-set. Then there exists a prime down-set I such that $I \subseteq S \setminus F$ which implies $F \subseteq S \setminus I$ which contradict to the maximality of F. Hence $S \setminus F$ is minimal prime down-set.

Conversely, let $S \setminus F$ be a minimal prime down-set and F is not a maximal filter. Thus there exists a proper filter G such that $F \subseteq G$ which implies $S \setminus G \subseteq S \setminus F$ which contradict the minimality of $S \setminus F$. Hence F is a maximal filter.

3. Minimal prime ideals

Let S be a semilattice. A down-set I of S is called an **ideal** if $a, b \in I$ implies the existence of $c \in I$ such that $a, b \leq c$. The set of all ideals of S is denoted by $\mathcal{I}(S)$. An ideal I of S is called a **proper ideal** if $I \neq S$. A **prime ideal** P is a proper ideal of S such that $a \wedge b \in P$ implies either $a \in P$ or $b \in P$. A prime ideal P is called **minimal** if there is a prime ideal Q such that $Q \subseteq P$, then $P = Q$. A filter F of S is called a **prime filter** if $F \neq S$ and $S \setminus F$ is a prime ideal.

We shall often use the following lemma in this paper.

Lemma 3.1. Let S be a directed above semilattice with 0. If S is not 0-distributive, then the set

$$F := \{x \in S \mid x \geq a \wedge y \neq 0 \text{ for all } y \geq b, c\},$$

where $a, b, c \in S$ such that $a \wedge b = a \wedge c = 0$, is a proper filter.

Proof. Since S is not 0-distributive, there are $p, q, r \in S$ such that $p \wedge q = p \wedge r = 0$ and $p \wedge d \neq 0$ for all $d \geq q, r$. Now we have $p \geq p \wedge d$. Thus $p \in F$. Hence F is non-empty. Clearly $0 \notin F$. It is enough to show that F is a filter. Let $x \in F$ and $z \geq x$. Then $x \geq a \wedge y$ for
all $y \geq b, c$ and by transitivity $z \geq a \land y$ for all $y \geq b, c$. Hence $z \in F$. Again let $x,z \in F$. Then $x \geq a \land y$ and $z \geq a \land y$ for all $y \geq b, c$. Thus $x \land z \geq a \land y$ for all $y \geq b, c$. Hence $x \land z \in F$. This implies F is a filter.

Now we have the following result.

Theorem 3.1. Every maximal filter of a 0-distributive semilattice is a prime filter.

Proof. Let S be a 0-distributive semilattice. Again let Q be a maximal filter of S. We shall show that Q is prime. It is sufficient to show that $S \setminus Q$ is a prime ideal. By Theorem 2.3 we have $S \setminus Q$ is a minimal prime down-set. Now let $x, y \in S \setminus Q$. Then by Lemma 2.1 we have $a \land x = 0 = b \land y$ for some $a, b \in Q$. Let $c = a \land b$. Clearly $c \land x = 0 = c \land y$ and $c \in Q$. Hence by the 0-distributivity of S there exists $z \in S$ such that $z \geq x, y$ and $c \land z = 0$. Hence $z \in S \setminus Q$. Thus $S \setminus Q$ is a prime ideal which implies Q is prime. \hfill \Box

Let A be non-empty subset of a semilattice S with 0. Set

$$A^\perp := \{x \in S \mid a \land x = 0 \text{ for all } a \in A\}.$$

Then A^\perp is called the annihilator of A. If $A = S$ then $A^\perp = S^\perp = \{0\}$. For $a \in S$, the annihilator of $\{a\}$ is simply denoted by a^\perp and hence $a^\perp = \{x \in S \mid a \land x = 0\}$. We can easily show that

$$A^\perp = \bigcap_{a \in A} a^\perp.$$

Let S be a semilattice with 0. An ideal I of S is called an annihilator ideal if $I = A^\perp$ for some non-empty subset A of S.

Our aim is to prove a Stone’s version separation theorem for 0-distributive semilattices. The following result due to [8, Theorem 7].

Theorem 3.2. Let S be a semilattice with 0. Then S is 0-distributive if and only if for any filter F of S such that $F \cap x^\perp = \emptyset (x \in S)$, there exists a prime filter containing F and disjoint from x^\perp.

Our conjecture is:

Conjecture 3.1. Let S be a directed above semilattice with 0. Then S is 0-distributive if and only if for any filter F and any annihilator ideal I of S such that $F \cap I = \emptyset$, there exists a prime filter containing F and disjoint from I.

The necessary conditions of a directed above semilattice to be 0-distributive is given below, but unfortunately, we could not prove or disprove the condition is sufficient or not.

Theorem 3.3. Let S be a directed above semilattice with 0. If for any filter F and any annihilator ideal I of S such that $F \cap I = \emptyset$, there exists a prime filter containing F and disjoint from I, then S is 0-distributive.

Proof. Suppose the condition holds. If S is not 0-distributive, then there are $a, b, c \in S$ such that $a \land b = 0 = a \land c$ and $a \land d \neq 0$ for all $d \geq b, c$ (such d exists as S is directed above). Let

$$F := \{x \in S \mid x \geq a \land y \text{ for all } y \geq b, c\}. $$

Then by Lemma 3.1, we have F is a proper filter.

Let I be an annihilator ideal such that $a \land d \notin I$ (such annihilator exists as $a \land d \notin S^\perp$). We shall show that $I \cap F = \emptyset$. If $x \in I \cap F$, then $x \geq a \land y$ for all $y \geq b, c$ which implies $a \land d \in I$.
Some Characterizations of 0-Distributive Semilattices

Let S be a semilattice. For $a \in S$, the ideal $\langle a \rangle$ is called the ideal generated by a. It can be easily seen that $(a^+) = a^+$ for any $a \in S$. An ideal I of S is called an α-ideal if $(i^+) = I$ for any $i \in I$.

Now we shall give some characterizations of 0-distributive semilattice. The following lemma is due to [1].

Lemma 3.2. Every proper filter of a semilattice with 0 is contained in a maximal filter.

We have the following result which is a generalization of [1, Theorem 3.1].

Theorem 3.4. Let S be a semilattice with 0. Then the following statements (i)–(iv) are equivalent and any one of them implies (v) and (vi).

(i) S is 0-distributive;
(ii) every maximal filter of S is prime;
(iii) every minimal prime down-set of S is a minimal prime ideal;
(iv) every proper filter of S is disjoint from a minimal prime ideal;
(v) for each element $a \in S$ such that $a \neq 0$, there is a minimal prime ideal not containing a;
(vi) each element $a \in S$ such that $a \neq 0$ is contained in a prime filter.

Proof. (i)⇒(ii). This follows by the Lemma 3.1.

(ii)⇒(iii). Let N be a minimal prime down-set. Then by Lemma 2.3 we have $S \setminus N$ is a maximal filter. Hence by (ii) $S \setminus N$ is a prime filter. Thus N is a prime ideal.

(iii)⇒(iv). Let F be a proper filter of S. By Lemma 3.2 there is a maximal filter M such that $F \subseteq M$. Hence by Lemma 2.3 we have $S \setminus M$ is a minimal prime down-set. Thus by (iii) $S \setminus M$ is a minimal prime ideal. Clearly, $F \cap (S \setminus M) = \emptyset$.

(iv)⇒(i). Suppose S is not 0-distributive. Then there are $a, b, c \in S$ such that $a \land b = a \land c = 0$ and $a \land d \neq 0$ for all $d \geq b, c$. Now set

$$F = \{ x \in S \mid x \geq a \land y \text{ for all } y \geq b, c \}.$$

Then by Lemma 3.1, we have F is a proper filter and hence by (iv) there exists a prime ideal Q such that $F \cap Q = \emptyset$. Thus $a \land p \notin Q$ for any $p \geq b, c$. This implies $a, p \notin Q$ for any $p \geq b, c$. Now $a \notin Q$ implies $b, c \in Q$. Then there is $m \geq b, c$ such that $m \in Q$ which is a contradiction. Therefore, $a \land d = 0$ for some $d \geq b, c$ and hence S is 0-distributive.

(v)⇒(vi). Let $a \in S$ such that $a \neq 0$. Then $\langle a \rangle$ is a proper filter. Then by (iv) $\langle a \rangle$ is disjoint from a minimal prime ideal N of S. Thus $a \notin N$.

Now we have following result which is a generalization of [1, Lemma 1.8].
Lemma 3.3. Let A be a non-empty subset of a semilattice S with 0. Then A^\perp is the intersection of all the minimal prime down-set not containing A.

Proof. Let S be a semilattice with 0 and $\emptyset \neq A \subseteq S$. Suppose

$$X := \bigcap \{P \mid A \nsubseteq P \text{ and } P \text{ is a minimal prime down-set}\}$$

Let $x \in A^\perp$. Then $x \land y = 0$ for all $y \in A$. This implies there is $z \notin P$ such that $x \land z = 0 \in P$. As P is prime, we have $x \in P$. Hence $x \in X$.

Conversely let, $x \in X$. If $x \notin A^\perp$. Then $x \land q \neq 0$ for some $q \in A$. Let $D = [x \land q]$. Then $0 \notin D$. Hence, $D \neq S$. Then by Lemma 3.2 we have $D \subseteq M$ for some maximal filter M. Hence by Lemma 2.3 we have $S \setminus M$ is a minimal prime down-set. Now $x \notin S \setminus M$ as $x \in D$ implies $x \in M$. Moreover $A \nsubseteq S \setminus M$ as $q \in A$ but $q \in M$ implies $q \notin S \setminus M$, which is a contradiction to $x \in X$. Hence $x \in A^\perp$. Thus the lemma is proved.

Theorem 3.5. Let S be a 0-distributive semilattice. If A is a non-empty subset of S and F is a proper filter intersecting A, there is a minimal prime ideal containing A^\perp and disjoint from F.

Proof. Let S be a directed above semilattice with 0. Again let A be a non-empty subset of S and F be a proper filter such that $F \cap A \neq \emptyset$. Then Lemma 2.2 $S \setminus F$ is a prime down-set and by Lemma 2.1 $N \subseteq S \setminus F$ for some minimal prime down-set N. Clearly, $N \cap F = \emptyset$. Also $A \nsubseteq S \setminus F$ and so $A \nsubseteq N$. By Lemma 3.3 $A^\perp \subseteq N$. Since S is 0-distributive, by theorem 3.4(iv) N is a minimal prime ideal.

4. Pseudocomplementation for 0-distributive semilattices

Let S be a semilattice with 0. An element $d \in S$ is called the pseudocomplement of $x \in S$, if $x \land d = 0$ and $y \in S, x \land y = 0$ implies $y \leq d$.

A semilattice S is said to be pseudocomplemented if each element of S has a pseudocomplement. The pseudocomplement of 0 is the largest element 1. Thus a pseudocomplemented semilattice contains both the smallest and the largest element.

Theorem 4.1. Every pseudocomplemented semilattice is 0-distributive but the converse is not true.

Proof. Let S be a pseudocomplemented semilattice. Suppose $a, b, c \in S$ with $a \land b = 0 = a \land c$. By the definition of pseudocomplemented, $b \leq a^\ast, c \leq a^\ast$ and $a \land a^\ast = 0$. Thus S is a 0-distributive semilattice.

To prove the converse is not true, consider the semilattice, \mathcal{M}_2 shown in the Figure 2, which is clearly 0-distributive but not pseudocomplemented as a^\ast does not exist.

Theorem 4.2. Let S be a pseudocomplemented semilattice and let J be an ideal of S. Then a prime ideal P containing J is a minimal prime ideal containing J if and only if for each $x \in P$ there is $y \in S \setminus P$ such that $x \land y \in J$.

Proof. Let P be a prime ideal of S containing J such that the given condition holds. We shall show that P is a minimal prime ideal containing J. Let K be a prime ideal containing J such that $K \subseteq P$. Let $x \in P$. Then there is $y \in S \setminus P$ such that $x \land y \in J$. Hence $x \land y \in K$ as K containing J. Since K is prime and $y \notin K$ implies $x \in K$. Hence $P \subseteq K$. Thus $K = P$. Therefore, P is a minimal prime ideal containing J.
Conversely, let \(P \) be a minimal prime ideal containing \(J \). Let \(x \in P \). Suppose for all \(y \in S \setminus P, x \land y \notin J \). Set \(D = (S \setminus P) \lor \{x\} \). We claim that \(0 \notin D \). For if \(0 \in D \), then \(0 = q \land x \) for some \(q \in S \setminus P \). Thus, \(x \land q = 0 \in J \) which is a contradiction. Therefore, \(0 \notin D \). Since \(\{0\} = 1^\perp \) by Theorem 3.2, there is a prime filter \(Q \) such that \(D \subseteq Q \) and \(0 \notin Q \). Let \(M = S \setminus Q \).

Then by the definition of prime filter of a semilattice, \(M \) is a prime ideal. We claim that \(M \cap D = \emptyset \). If \(a \in M \cap D \), then \(a \in M \) and hence \(a \notin Q \). Thus \(a \notin D \) which is a contradiction. Hence \(M \cap D = \emptyset \). Therefore, \(M \cap (S \setminus P) = \emptyset \) and hence \(M \subseteq P \). Also \(M \neq P \), because \(x \in D \) implies \(x \in Q \) and hence \(x \notin M \) but \(x \in P \). This shows that \(P \) is not minimal which is a contradiction. Hence the given condition holds.

We enclose the paper with the following useful characterization of minimal prime ideal.

Theorem 4.3. Let \(S \) be a pseudocomplemented semilattice and let \(P \) be a prime ideal of \(S \). Then the followings are equivalent:

(i) \(P \) is minimal.

(ii) \(x \in P \) implies that \(x^* \notin P \).

Proof. (i) \(\Rightarrow \) (ii). Let \(P \) be a minimal prime ideal and let \(x^* \in P \) for some \(x \in P \). Set \(D = (S \setminus P) \lor \{x\} \). We claim that \(0 \notin D \). For if \(0 \in D \), then \(0 = q \land x \) for some \(q \in S \setminus P \), which implies \(q \leq x^* \in P \) which is a contradiction. Therefore, \(0 \notin D \). Since \(\{0\} = 1^\perp \) by Theorem 3.2, there is a prime filter \(Q \) such that \(D \subseteq Q \) and \(0 \notin Q \). Let \(M = S \setminus Q \). Then by the definition of prime filter of a semilattice, \(M \) is a prime ideal. We claim that \(M \cap D = \emptyset \). If \(a \in M \cap D \), then \(a \in M \) and hence \(a \notin Q \). Thus \(a \notin D \) which is a contradiction. Hence \(M \cap D = \emptyset \). Therefore, \(M \cap (S \setminus P) = \emptyset \) and hence \(M \subseteq P \). Also \(M \neq P \), because \(x \in D \) implies \(x \in Q \) and hence \(x \notin M \) but \(x \in P \). This shows that \(P \) is not minimal which is a contradiction. Hence (ii) holds.

(ii) \(\Rightarrow \) (i). Let \(P \) be a prime ideal of \(S \) such that (ii) holds. We shall show that \(P \) is a minimal prime ideal. Let \(K \) be a prime ideal satisfying (ii) such that \(K \subseteq P \). Let \(x \in P \). Then \(x \land x^* = 0 \in K \). Since \(K \) is prime and \(x^* \notin K \) implies \(x \in K \). Hence \(P \subseteq K \). Thus \(K = P \). Therefore, \(P \) is a minimal prime ideal.

References