On K-Starcompact Spaces

YAN-KUI SONG
Department of Mathematics,
Nanjing Normal University, 210097, P.R.China
songyankui@njnu.edu.cn

Abstract. A space X is K-starcompact if for every open cover U of X, there exists a compact subset K of X such that $St(K, U) = X$, where $St(K, U) = \bigcup\{U \in U : U \cap K \neq \emptyset\}$. In this paper, we investigate the relations between K-starcompact spaces and other related spaces. We also study topological properties of K-starcompact spaces.

2000 Mathematics Subject Classification: 54D20, 54B10, 54D55

Key words and phrases: Countably compact, star-compact, K-starcompact, $1\frac{1}{2}$-star-compact.

1. Introduction

By a space, we mean a topological space. Let us recall that a space X is countably compact if every countable open cover of X has a finite subcover. Fleischman [1] defined a space X to be starcompact if for every open cover U of X, there exists a finite subset F of X such that $St(F, U) = X$, where $St(F, U) = \bigcup\{U \in U : U \cap F \neq \emptyset\}$, and he proved that every countably compact space is starcompact. Conversely, van Douwen et al. [2] proved that every Hausdorff starcompact space is countably compact, but this does not hold for T_1-space (see [3, Example 2.5]. As generalizations of starcompactness, the following classes of spaces were given.

Definition 1.1. (4) A space X is K-starcompact if for every open cover U of X, there exists a compact subset K of X such that $St(K, U) = X$.

Definition 1.2. (5) A space X is $1\frac{1}{2}$-starcompact if for every open cover U of X, there exists a finite subset V of U such that $St(\cup V, U) = X$.

In, a $1\frac{1}{2}$-starcompact space is called 1-starcompact. From the above definitions, it is not difficult to see that every starcompact space is K-starcompact and every K-starcompact space is $1\frac{1}{2}$-starcompact, but the converses do not hold (see Examples 2.1, 2.2 and 2.3 below).

Throughout the paper, the cardinality of a set A is denoted by $|A|$. For a cardinal κ, κ^+ denotes the smallest cardinal greater than κ. Let ω be the first infinite cardinal, ω_1 the first uncountable cardinal and \mathfrak{c} the cardinality of continuum. As usual, a

Received: April 13, 2006; Revised: June 6, 2006.
cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. When viewed as a space, every cardinal has the usual order topology. For each ordinal \(\alpha, \beta \) with \(\alpha < \beta \), we write \((\alpha, \beta) = \{ \gamma : \alpha < \gamma < \beta \} \). All unexplained concepts or symbols are standard as in Engelking [6].

2. \(\mathcal{K} \)-starcompact spaces and related spaces

Fleischman [1] proved that every countably compact space is starcompact. By the above definitions, it is clear that every starcompact space is \(\mathcal{K} \)-starcompact and every \(\mathcal{K} \)-starcompact space is \(1_{\mathcal{K}} \)-starcompact. In [1], van Douwen et al. have proved that every \(1_{\mathcal{K}} \)-starcompact space is pseudocompact. Since every normal pseudocompact space is countably compact, thus we have the following theorem.

Theorem 2.1. Let \(X \) be a normal space. Then, the following conditions are equivalent:

(a) \(X \) is countably compact;
(b) \(X \) is starcompact;
(c) \(X \) is \(\mathcal{K} \)-starcompact;
(d) \(X \) is \(1_{\mathcal{K}} \)-starcompact;
(e) \(X \) is pseudocompact.

In the following, we show that Theorem 2.1 is not true for the classes of \(T_1 \) or Tychonoff spaces. van Douwen et al. [2] have proved that every starcompact Hausdorff space is countably compact, but this does not hold for \(T_1 \)-spaces (see [3, Example 2.5]). For a Tychonoff space \(X \), the symbol \(\beta(X) \) means the \(\check{\text{C}} \)ech-Stone compactification of \(X \).

Example 2.1. There exists a Tychonoff \(\mathcal{K} \)-starcompact space \(X \) which is not starcompact.

Proof. Let

\[
X = (\beta(\omega) \times (\omega_1 + 1)) \setminus ((\beta(\omega) \setminus \omega) \times \{\omega_1\}).
\]

To show that \(X \) is \(\mathcal{K} \)-starcompact. Let \(\mathcal{U} \) be an open cover of \(X \). Without loss of generality, we can assume that \(\mathcal{U} \) consists of basic open subsets of \(X \). For each \(n \in \omega \), there exist an \(\alpha_n < \omega_1 \) and \(U_n \in \mathcal{U} \) such that

\[
\{n\} \times (\alpha_n, \omega_1] \subseteq U_n.
\]

Let \(\alpha = \sup\{\alpha_n : n \in \omega\} \). Then, \(\alpha < \omega_1 \). If we put \(K_1 = \beta(\omega) \times \{\alpha + 1\} \), then \(K_1 \) is a compact subset of \(X \) and \(\omega \times \{\omega_1\} \subseteq St(K_1, \mathcal{U}) \), since \((n, \omega_1) \in U_n \in \mathcal{U} \) and \(U_n \cap K_1 \neq \emptyset \), for each \(n \in \omega \). On the other hand, since \(\beta(\omega) \times \omega_1 \) is countably compact, there is a finite subset \(F \) of \(\beta(\omega) \times \omega_1 \) such that

\[
\beta(\omega) \times \omega_1 \subseteq St(F, \mathcal{U}).
\]

If we put \(K = K_1 \cup F \), then \(K \) is a compact subset of \(X \) and \(X = St(K, \mathcal{U}) \). This shows that \(X \) is \(\mathcal{K} \)-starcompact.

However, \(X \) is not countably compact, since \(\{\{n, \omega_1\} : n \in \omega\} \) is a closed discrete infinite subset of \(X \). Thus, \(X \) is not starcompact, since every Hausdorff starcompact is countably compact.
Remark 2.1. Example 2.1 shows that the closed subset \(\{ \langle n, \omega_1 \rangle : n \in \omega \} \) of a Tychonoff \(K \)-starcompact space \(X \) is not \(K \)-starcompact, since it is a closed discrete infinite subset of \(X \).

Example 2.2. There exists a \(1 \frac{1}{2} \)-starcompact \(T_1 \)-space \(X \) which is not \(K \)-starcompact.

Proof. Let \(X = \omega_1 \cup A \), where \(A = \{ a_\alpha \alpha \in \omega_1 \} \) is a set of cardinality \(\omega_1 \). We topologize \(X \) as follows: \(\omega_1 \) has the usual order topology and is an open subspace of \(X \); a basic neighborhood of a point \(a_\alpha \in A \) takes the form

\[
O_\beta(a_\alpha) = \{ a_\alpha \} \cup (\beta, \omega_1), \quad \text{where} \ \beta < \omega_1.
\]

Then, \(X \) is a \(T_1 \)-space. To show that \(X \) is \(1 \frac{1}{2} \)-starcompact, let \(U \) be an open cover of \(X \). Without loss of generality, we can assume that \(U \) consists of basic open subsets of \(X \). Thus, it is suffices to show that there exists a finite subset \(V \) of \(U \) such that \(St(\cup \mathcal{V}, U) = X \). Since \(\omega_1 \) is countably compact, then it is \(1 \frac{1}{2} \)-starcompact. Hence there is a finite subset \(\mathcal{V}_1 \) of \(U \) such that \(\omega_1 \subseteq St(\cup \mathcal{V}_1, U) \). On the other hand, if we pick \(\alpha_0 < \omega_1 \), then there exists a \(U_{\alpha_0} \in U \) such that \(a_{\alpha_0} \in U_{\alpha_0} \). For each \(\alpha < \omega_1 \), there is \(U_{\alpha} \in U \) such that \(a_\alpha \in U_{\alpha} \). Hence we have \(U_\alpha \cap U_\alpha_0 \neq \emptyset \), by the definition of the topology of \(X \). Therefore \(A \subseteq St(U_{\alpha_0}, U) \). If we put \(\mathcal{V} = \mathcal{V}_1 \cup \{ U_{\alpha_0} \} \), then \(\mathcal{V} \) is a finite subset of \(U \) and \(X = St(\cup \mathcal{V}, U) \).

Next, we show that \(X \) is not \(K \)-starcompact. Let us consider the open cover

\[
\mathcal{V} = \{ \omega_1 \} \cup \{ O_\alpha(a_\alpha) : \alpha < \omega_1 \}.
\]

Let \(K \) be a compact subset of \(X \). Since \(A \) is discrete closed in \(X \), there exists an \(\alpha_1 < \omega_1 \) such that

\[
K \cap \{ a_\alpha : \alpha > \alpha_1 \} = \emptyset;
\]

On the other hand, since \(\omega_1 \) is a countably compact space, there exists \(\alpha_2 < \omega_1 \) such that \(K \cap (\alpha_2, \omega_1) = \emptyset \), since \(K \cap \omega_1 \) is compact in \(\omega_1 \). Choose \(\beta > \max\{ \alpha_1, \alpha_2 \} \). Then \(a_\beta \not\in St(K, \mathcal{V}) \), since \(O_\beta(a_\beta) \) is the unique element of \(\mathcal{V} \) containing \(a_\beta \) and \(O_\beta \cap K = \emptyset \). This shows that \(X \) is not \(K \)-starcompact.

Question 1. Is there a \(1 \frac{1}{2} \)-starcompact Hausdorff (or Tychonoff) space which is not \(K \)-starcompact?

Example 2.3. [2, Example 2.2.5] There exists a pseudocompact Tychonoff space which is not \(1 \frac{1}{2} \)-starcompact.

3. Topological properties of \(K \)-starcompact spaces

In this section, we study topological properties of \(K \)-starcompact spaces. Example 2.2 shows that a closed subset of a \(K \)-starcompact space \(X \) need not be \(K \)-starcompact. Now, we give an example showing that a regular closed subset of a Tychonoff \(K \)-starcompact space need not be \(K \)-starcompact. Here, a subset \(A \) of a space \(X \) is said to be regular closed in \(X \) if \(A = \text{cl}_X \text{int}_X A \).

Example 3.1. There exists a \(K \)-starcompact Tychonoff space \(X \) having a regular-closed subset which is not \(K \)-starcompact.
Proof. Let D be a discrete space of cardinality \mathfrak{c}. Let

$$X = (\beta(D) \times (\mathfrak{c}^+ + 1)) \setminus ((\beta(D) \setminus D) \times \{\mathfrak{c}^+\}).$$

To show that X is \mathcal{K}-starcompact. For this end, let U be an open cover of X. Since $\beta(D) \times \mathfrak{c}^+$ is countably compact, then it is star-compact. Hence there exists a finite subset F of $\beta(D) \times \mathfrak{c}^+$ such that

$$\beta(D) \times \mathfrak{c}^+ \subseteq \text{St}(F, U).$$

It remains to find a compact subset K_1 such that $D \times \{\mathfrak{c}^+\} \subseteq \text{St}(K_1, U)$. For each $d \in D$, there exists a $\alpha_d < \mathfrak{c}^+$ such that $\{d\} \times (\alpha_d, \mathfrak{c}^+]$ is included in some member of U. Let $\alpha_0 = \sup\{\alpha_d : d \in D\}$. Then, $\alpha_0 < \mathfrak{c}^+$, since $|D| = \mathfrak{c}$. Thus, if we put $K_1 = \beta(D) \times \{\alpha_0 + 1\}$, then K_1 is a compact subset of X and $D \times \{\mathfrak{c}^+\} \subseteq \text{St}(K_1, U)$. If we put $K = F \cup K_1$, then K is a compact subset of X and $X = \text{St}(K, U)$, which completes the proof. Let $\Psi = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space, where \mathcal{R} be a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$ (see Mrówka [7]). Then, the space Ψ is not 1_2-starcompact [2, Example 2.25], and hence, it is not \mathcal{K}-starcompact, since every \mathcal{K}-starcompact space is 1_2-starcompact.

Assume $X \cap \Psi = \emptyset$. Define a bijection $f : D \times \{\mathfrak{c}^+\} \to \mathcal{R}$. Let Y be the quotient space obtained from the topological sum $X \oplus \Psi$ by identifying p with $f(p)$ for every $p \in D \times \{\mathfrak{c}^+\}$ and let $\varphi : X \oplus \Psi \to Y$ be the quotient map. Then, $\varphi(\Psi)$ is a regular-closed subspace of Y which is not \mathcal{K}-starcompact, since $\varphi(\Psi)$ is homomorphic to Ψ.

Next, we show that Y is \mathcal{K}-starcompact. For this end, let U be an open cover of Y. Then, there exists a compact subset F_1 of $\varphi(X)$ such that

$$\varphi(X) \subseteq \text{St}(F_1, U),$$

since $\varphi(X)$ is homomorphic to X. Since every infinite subset of ω has a limit point in Ψ, the set $F_2 = Y \setminus \text{St}(F_1, U)$ is finite. Consequently, if we put $K = F_1 \cup F_2$, then K is a compact subset of Y and $Y = \text{St}(K, U)$. Therefore, Y is \mathcal{K}-starcompact completing the proof.

Concerning the image and preimage of a \mathcal{K}-starcompact space under a continuous map, Ikenaga and Tani [4] have proved the following two theorems.

Theorem 3.1. [4] Let $f : X \to Y$ be a continuous map from a \mathcal{K}-starcompact space X onto a space Y. Then, Y is a \mathcal{K}-starcompact space.

Theorem 3.2. [4] Let $f : X \to Y$ be an open perfect continuous map from a space X onto a \mathcal{K}-starcompact space. Then, X is a \mathcal{K}-starcompact space.

The following example shows that the condition of open perfect can not be replaced by perfect in the Theorem 3.2. We use the Alexandorff duplicate $A(X)$ of a space X. The underlying set of $A(X)$ is $X \times \{0, 1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of a point $\langle x, 0 \rangle \in X \times \{0\}$ is of the from $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 1 \rangle\})$, where U is a neighborhood of x in X.

Example 3.2. There exists a perfect onto map $f : X \to Y$ such that Y is a \mathcal{K}-starcompact space, but X is not \mathcal{K}-starcompact.
Proof. Let Y be the space X in the proof of Example 3.1. Then Y is \mathcal{K}-starcompact and has the infinite discrete closed subset $F = D \times \{c^+\}$. Let X be the Alexandroff duplicate $A(Y)$ of Y. Then, X is not \mathcal{K}-starcompact, since $F \times \{1\}$ is an infinite discrete, open and closed set in X. Let $f : X \to Y$ be the natural map. Then, f is a perfect map. This completes the proof.

By Corollary 3.2, we have the following corollary.

Corollary 3.1. The product of a \mathcal{K}-starcompact space and a compact space is \mathcal{K}-starcompact.

However, the product of two \mathcal{K}-starcompact spaces need not be \mathcal{K}-starcompact. In fact, the product of two countably compact spaces is not necessarily \mathcal{K}-star-ompact.

Example 3.3. There exist two countably compact spaces X and Y such that $X \times Y$ is not \mathcal{K}-starcompact.

Proof. We define $X = \bigcup_{\alpha < \omega_1} E_\alpha$, $Y = \bigcup_{\alpha < \omega_1} F_\alpha$, where E_α and F_α are the subsets of $\beta(\omega)$ which are defined inductively by the following conditions:

1. $E_\alpha \cap F_\beta = \omega$ if $\alpha \neq \beta$;
2. $|E_\alpha| \leq c$ and $|F_\alpha| \leq c$;
3. every infinite subset of E_α (resp. F_α) has an accumulation point in $E_{\alpha+1}$ (resp. $F_{\alpha+1}$).

Those sets E_α and F_α are well-defined since every infinite closed set in $\beta(\omega)$ has the cardinality 2^c. Then, $X \times Y$ is not \mathcal{K}-starcompact, because the diagonal $\{\langle n, n \rangle : n \in \omega\}$ is a discrete open and closed subset of $X \times Y$ with the cardinality ω and \mathcal{K}-starcompactness is preserved by open and closed subset.

We end this section by the following theorem. For a space X let $l(X)$ denote the *Lindelöf number* of the space X; that is, the smallest cardinal number κ such that every open cover of X has an open refinement \mathcal{V} with $|\mathcal{V}| \leq \kappa$.

Theorem 3.3. Every Tychonoff space can be embedded in a \mathcal{K}-starcompact Tychonoff space as a closed subspace.

Proof. Let X be a Tychonoff space. If we put

$$Z = (\beta(X) \times (\tau^* + 1)) \setminus (\beta(X) \times \{\tau^*\}),$$

where τ is a regular cardinal and $\tau > l(X)$, then $X = X \times \{\tau^*\}$ is a closed subset of Z, which is homeomorphic to X. To show that Z is \mathcal{K}-starcompact. Let \mathcal{U} be an open cover of Z. Since $\beta(X) \times \tau^*$ is countably compact, there is a finite subset $F_1 \subseteq \beta(X) \times \tau^*$ such that

$$\beta(X) \times \tau^* \subseteq St(F_1, \mathcal{U}).$$

It remains to find a compact subset $F_2 \subseteq Z$ such that $\overline{X} \subseteq St(F_2, \mathcal{U})$. Denote by \mathcal{V} the family of all sets of the from $V = (W(V) \times (\alpha(V), \tau^*)) \cap Z$ (where $\alpha(V) < \tau^*$ and $W(V)$ is an open set in $\beta(X)$) such that $V \subseteq U(V)$ for some $U(V) \in \mathcal{U}$. Then \mathcal{V} is an open cover of \overline{X}. There exists a subcover $\mathcal{V}_0 \subseteq \mathcal{V}$ of cardinality $\leq l(X)$. If we put

$$\alpha^* = \sup\{\alpha(V) : V \in \mathcal{V}_0\} + 1,$$
then $F_2 = \beta(X) \times \{\alpha^*\}$ is a compact subspace of Z. Since every element of \mathcal{V}_0 intersects F_2, we have

$$X \subseteq \text{St}(F_2, \mathcal{V}_0) \subseteq \text{St}(F_2, \mathcal{U}).$$

Set $K = F_1 \cup F_2$; then K is a compact subset of Z and $Z \subseteq \text{St}(K, \mathcal{U})$, which completes the proof.

Question 2. Can a Tychonoff space be embedded in a K-starcompact Tychonoff space as a G_δ-closed subspace?

Acknowledgments. The paper was written while the author is studying in Nanjing University as a post-doctor. The author is most grateful to the referee for his kind helpful suggestions. The author acknowledges support from the NSF of China (Grants 10571081 and 10271056).

References