Almost Contra-Precontinuous Functions

ERDAL EKICI
Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
e-mail: eekici@comu.edu.tr

Abstract. In this paper, we present and study almost contra-precontinuity as a new generalization of regular set-connectedness, contra-precontinuity, contra-continuity, almost s-continuity and perfectly continuity. Furthermore, we obtain basic properties and preservation theorems of almost contra-precontinuity and relationships between almost contra-precontinuity and P-regular graphs.

2000 Mathematics Subject Classification: 54C08, 54C10, 54C05.

1. Introduction

In 1996, Dontchev introduced contra-continuous functions. Recently, Dontchev, Ganster and Reilly introduced a new class of functions called regular set-connected functions (in 1999) and Jafari and Noiri introduced and studied a new form of functions called contra-precontinuous functions (in 2002). We introduced and studied a new class of functions called almost contra-precontinuous functions which generalize classes of regular set-connected [5], contra-precontinuous [9], contra-continuous [4], almost s-continuous [19] and perfectly continuous [17] functions. Moreover, we obtain basic properties and preservation theorems of almost contra-precontinuous functions and relationships between almost contra-precontinuity and P-regular graphs.

2. Preliminaries

Throughout this paper, all spaces X and Y (or (X, τ) and (Y, υ)) are always topological spaces.

A subset A of a space X is said to be regular open (respectively regular closed) if $A = \text{int}(\text{cl}(A))$ (respectively $A = \text{cl}(\text{int}(A))$) where $\text{cl}(A)$ and $\text{int}(A)$ denote the closure and interior of A [26]. A subset A of a space is called preopen if $A \subset \text{int}(\text{cl}(A))$ [14]. The complement of a preopen set is said to be preclosed.

The family of all regular open (respectively regular closed, preopen, preclosed) sets of X is denoted by $\text{RO}(X)$ (respectively $\text{RC}(X)$, $\text{PO}(X)$, $\text{PC}(X)$).
A subset A of a space X is said to be semi open if $A \subset cl(\text{int}(A))$. The complement of a semi open set is called semi closed [2]. The intersection of all semi closed sets containing A is called the semi closure [2] of A and is denoted by $scl(A)$. The semi interior of A is defined by the union of all semi open sets contained in A and is denoted by $s\text{-int}(A)$.

Definition 1. A function $f : X \to Y$ is called contra-precontinuous if $f^{-1}(V)$ is preclosed in X for each open set V of Y [9].

Definition 2. A function $f : X \to Y$ is called contra-continuous if $f^{-1}(V)$ is closed in X for each open set V of Y [4].

Definition 3. A function $f : X \to Y$ is said to be regular set-connected if $f^{-1}(V)$ is clopen for every $V \in RO(Y)$ [5].

Definition 4. A function $f : X \to Y$ is said to be perfectly continuous if $f^{-1}(V)$ is clopen in X for every open set V of Y [17].

Definition 5. A function $f : X \to Y$ is called almost s-continuous if for each $x \in X$ and each $V \in SO(Y)$ with $f(x) \in V$, there exists an open set U in X containing x such that $f(U) \subset scl(V)$ [19].

Definition 6. A function $f : X \to Y$ is said to be almost precontinuous if $f^{-1}(V)$ is preopen in X for every regular open set V of Y [16].

Definition 7. A function $f : X \to Y$ is said to be precontinuous if $f^{-1}(V)$ is preopen in X for every open set V of Y [13].

Definition 8. A function $f : X \to Y$ is called M-preopen (M-preclosed) if image of each preopen (resp. preclosed) set is preopen (resp. preclosed) [14].

3. Almost contra-precontinuous functions

Definition 9. A function $f : X \to Y$ is said to be almost contra-precontinuous if $f^{-1}(V) \in PC(X)$ for each $V \in RO(Y)$.

Theorem 1. Let (X, τ) and (Y, υ) be topological spaces. The following statements are equivalent for a function $f : X \to Y$:
Almost Contra-Precontinuous Functions

\begin{enumerate}
\item f is almost contra-precontinuous;
\item $f^{-1}(F) \in PO(X)$ for every $F \in RC(Y)$;
\item for each $x \in X$ and each regular closed set F in Y containing $f(x)$, there exists a preopen set U in X containing x such that $f(U) \subset F$;
\item for each $x \in X$ and each regular open set V in Y non-containing $f(x)$, there exists a preclosed set K in X non-containing x such that $f^{-1}(V) \subset K$;
\item $f^{-1}(\text{int}(\text{cl}(G))) \in PC(X)$ for every open subset G of Y;
\item $f^{-1}(\text{cl}(\text{int}(F))) \in PO(X)$ for every closed subset F of Y.
\end{enumerate}

\textbf{Proof.}

(1) \iff (2): Let $F \in RC(Y)$. Then $Y \setminus F \in RO(Y)$. By (1), $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F) \in PC(X)$. We have $f^{-1}(F) \in PO(X)$.

Reverse can be obtained similarly.

(2) \Rightarrow (3): Let F be any regular closed set in Y containing $f(x)$. By (2), $f^{-1}(F) \in PO(X)$ and $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then $f(U) \subset F$.

(3) \Rightarrow (2): Let $F \in RC(Y)$ and $x \in f^{-1}(F)$. From (3), there exists a preopen set U_x in X containing x such that $U \subset f^{-1}(F)$. We have $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} U_x$. Thus, $f^{-1}(F)$ is preopen.

(3) \iff (4): Let V be any regular open set in Y non-containing $f(x)$. Then, $Y \setminus V$ is a regular closed set containing $f(x)$. By (3), there exists a preopen set U in X containing x such that $f(U) \subset Y \setminus V$. Hence, $U \subset f^{-1}(Y \setminus V) \subset X \setminus f^{-1}(V)$ and then $f^{-1}(V) \subset X \setminus U$. Take $H = X \setminus U$. We obtain that H is a preclosed set in X non-containing x.

The converse can be shown easily.

(1) $\iff (5)$: Let G be open subset of Y. Since $\text{int}(\text{cl}(G))$ is regular open, then by (1), it follows that $f^{-1}(\text{int}(\text{cl}(G))) \in PC(X)$.

The converse can be shown easily.

(2) $\iff (6)$: It can be obtained similar as (1) $\iff (5)$.

Remark 1. The following diagram holds:

\[
\text{perfectly continuous} \Rightarrow \text{contra-continuous} \Rightarrow \text{contra-precontinuous} \\
\downarrow \hspace{2cm} \downarrow \\
\text{regular set-connected} \Rightarrow \text{almost contra-precontinuous} \\
\uparrow \\
\text{almost } s\text{-continuous}
\]

None of the implications is reversible for almost contra-precontinuity as shown by the following examples.

Example 1. Let \(X = \{a, b, c\} \), \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, b\}\} \) and \(\nu = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\} \). Then the identity function \(f : (X, \tau) \to (X, \nu) \) is almost contra-precontinuous. But it is not regular set-connected.

Example 2. Let \(X = \{a, b, c\} \), \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, c\}\} \) and \(\nu = \{X, \emptyset, \{a\}, \{a, b\}\} \) and \(f : (X, \tau) \to (X, \nu) \) be the identity function. Then \(f \) is almost contra-precontinuous function which is not contra-precontinuous.

The other implications are not reversible as shown in [5, 6, 9].

Theorem 2. If \(f : X \to Y \) is almost contra-precontinuous function and \(A \) is a semi open subset of \(X \), then the restriction \(f \mid_A : A \to Y \) is almost contra-precontinuous.

Proof. Let \(F \in RC(Y) \). Since \(f \) is almost contra-precontinuous, then \(f^{-1}(F) \in PO(X) \). Since \(A \) is semi open in \(X \), it follows from ([13], Lemma 2.1) that \((f \mid_A)^{-1}(F) = A \cap f^{-1}(F) \in PO(A) \). Therefore, \(f \mid_A \) is a almost contra-precontinuous function.

Remark 2. It should be noted that every restriction of an almost contra-precontinuous function is not necessarily almost contra-precontinuous.

Example 3. Let \(X = \{a, b, c, d\} \), \(\sigma = \{X, \emptyset, \{a, b\}\} \), and \(\tau = \{X, \emptyset, \{a\}, \{b, c, d\}\} \). The identity function \(f : (X, \sigma) \to (X, \tau) \) is almost contra-precontinuous, but, if \(A = \{a, c, d\} \) where \(A \) is not semi open in \((X, \sigma) \) and \(\sigma_A \) is the relative topology on \(A \) induced by \(\sigma \), then \(f \mid_A : (A, \sigma_A) \to (X, \tau) \) is not almost contra-precontinuous.
Note that \{b, c, d\} is regular closed in \((X, \tau)\), but that \((f \mid_A)^{-1}(\{b, c, d\}) = \{c, d\}\) is not preopen in \((A, \sigma_A)\).

Definition 10. A cover \(\sum = \{U_\alpha : \alpha \in I\}\) of subsets of \(X\) is called a p-cover if \(U_\alpha\) is preopen for each \(\alpha \in I\).

Lemma 1. If \(U \in PO(X)\) and \(V \in PO(U)\), then \(V \in PO(X)\) [13].

Theorem 3. Let \(f : X \to Y\) be a function and \(\sum = \{U_\alpha : \alpha \in I\}\) be a p-cover of \(X\). If for each \(\alpha \in I, f \mid_{U_\alpha}\) is almost contra-precontinuous, then \(f : X \to Y\) is an almost contra-precontinuous function.

Proof. Let \(V \in RC(Y)\). Since \(f \mid_{U_\alpha}\) is almost contra-precontinuous for each \(\alpha \in I\), \((f \mid_{U_\alpha})^{-1}(V) \in PO(U_\alpha)\). Since \(U_\alpha \in PO(X)\), by the previous lemma, \((f \mid_{U_\alpha})^{-1}(V) \in PO(X)\) for each \(\alpha \in I\). Then \(f^{-1}(V) = \bigcup_{\alpha \in I} (f \mid_{U_\alpha})^{-1}(V) \in PO(X)\). This gives \(f\) is an almost contra-precontinuous.

Theorem 4. Let \(f : X \to Y\) be a function and let \(g : X \to X \times Y\) be the graph function of \(f\), defined by \(g(x) = (x, f(x))\) for every \(x \in X\). If \(g\) is almost contra-precontinuous, then \(f\) is almost contra-precontinuous.

Proof. Let \(V \in RC(Y)\), then \(X \times V = X \times cl(int(V)) = cl(int(X)) \times cl(int(V)) = cl(int(X \times V))\). Therefore, \(X \times V \in RC(X \times Y)\). Since \(g\) is almost contra-precontinuous, then \(f^{-1}(V) = g^{-1}(X \times V) \in PO(X)\). Thus, \(f\) is almost contra-precontinuous.

Theorem 5. Let \(f : X \to Y\) and \(g : Y \to Z\) be functions. Then, the following properties hold:

1. If \(f\) is almost contra-precontinuous and \(g\) is regular set-connected, then \(g \circ f : X \to Z\) is almost contra-precontinuous and almost precontinuous.

2. If \(f\) is almost contra-precontinuous and \(g\) is perfectly continuous, then \(g \circ f : X \to Z\) is precontinuous and contra-precontinuous.

3. If \(f\) is contra-precontinuous and \(g\) is regular set-connected, then \(g \circ f : X \to Z\) is almost contra-precontinuous and almost precontinuous.
Proof. (1) Let V be any regular open set in Z. Since g is regular set-connected, $g^{-1}(V)$ is clopen. Since f is almost contra-precontinuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is preopen and preclosed. Therefore, $g \circ f$ is almost contra-precontinuous and almost precontinuous.

(2) and (3) can be obtained similarly.

Theorem 6. If $f : X \to Y$ is a surjective M-preopen and $g : Y \to Z$ is a function such that $g \circ f : X \to Z$ is almost contra-precontinuous, then g is almost contra-precontinuous.

Proof. Let V be any regular closed set in Z. Since $g \circ f$ is almost contra-precontinuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is preopen. Since f is surjective M-preopen, $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is preopen. Therefore, g is almost contra-precontinuous.

Theorem 7. If $f : X \to Y$ is a surjective M-preclosed and $g : Y \to Z$ is a function such that $g \circ f : X \to Z$ is almost contra-precontinuous, then g is almost contra-precontinuous.

Proof. Similarly as the previous theorem.

Definition 11. A function $f : X \to Y$ is called almost continuous if $f^{-1}(V)$ is open in X for each regular open set V of Y [20].

Theorem 8. If a function $f : X \to Y$ is almost contra-precontinuous and almost continuous, then f is regular set-connected.

Proof. Let $V \in \text{RO}(Y)$. Since f is almost contra-precontinuous and almost continuous, $f^{-1}(V)$ is preclosed and open. Hence, $f^{-1}(V)$ is clopen. We obtain that f is regular set-connected.

Definition 12. A filter base Λ is said to be p-convergent (resp. rc-convergent) to a point x in X if for any $U \in \text{PO}(X)$ containing x (resp. $U \in \text{RC}(X)$ containing x), there exists a $B \in \Lambda$ such that $B \subset U$.

Theorem 9. If a function $f : X \to Y$ is almost contra-precontinuous, then for each point $x \in X$ and each filter base Λ in X p-converging to x, the filter base $f(\Lambda)$ is rc-convergent to $f(x)$.
Proof. Let \(x \in X \) and \(\Lambda \) be any filter base in \(X \) \(p \)-converging to \(x \). Since \(f \) is almost contra-precontinuous, then for any \(V \in RC(Y) \) containing \(f(x) \), there exists \(U \in PO(X) \) containing \(x \) such that \(f(U) \subset V \). Since \(\Lambda \) is \(p \)-converging to \(x \), there exists a \(B \in \Lambda \) such that \(B \subset U \). This means that \(f(B) \subset V \) and therefore the filter base \(f(\Lambda) \) is rc-convergent to \(f(x) \).

Note that a function \(f : X \rightarrow Y \) is said to be almost contra-precontinuous at \(x \) if each regular closed set \(F \) in \(Y \) containing \(f(x) \), there exists a preopen set \(U \) in \(X \) containing \(x \) such that \(f(U) \subset F \).

Theorem 10. Let \(f : X \rightarrow Y \) be a function and \(x \in X \). If there exists \(U \in PO(X) \) such that \(x \in U \) and the restriction of \(f \) to \(U \) is almost contra-precontinuous at \(x \), then \(f \) is almost contra-precontinuous at \(x \).

Proof. Suppose that \(F \in RC(Y) \) containing \(f(x) \). Since \(f \big|_U \) is almost contra-precontinuous at \(x \), there exists \(V \in PO(U) \) containing \(x \) such that \(f(V) = (f \big|_U)(V) \subset F \). Since \(U \in PO(X) \) containing \(x \), it follows from ([13] 1982, Lemma 2.2) that \(V \in PO(X) \) containing \(x \). This shows clearly that \(f \) is almost contra-precontinuous at \(x \).

4. The preservation theorems

In this section, we investigate the relationships among almost contra-precontinuous functions, separation axioms, connectedness and compactness.

Definition 13. A space \(X \) is said to be weakly Hausdorff if each element of \(X \) is an intersection of regular closed sets [23].

Definition 14. A space \(X \) is said to be pre-\(T_0 \) if for each pair of distinct points in \(X \), there exists a preopen set of \(X \) containing one point but not the other [1,11].

Definition 15. A space \(X \) is said to be pre-\(T_1 \) if for each pair of distinct points \(x \) and \(y \) of \(X \), there exist preopen sets \(U \) and \(V \) containing \(x \) and \(y \) respectively such that \(y \notin U \) and \(x \notin V \) [1,11].

Theorem 11. If \(f : X \rightarrow Y \) is an almost contra-precontinuous injection and \(Y \) is weakly Hausdorff, then \(X \) is pre-\(T_1 \).
Proof. Suppose that Y is weakly Hausdorff. For any distinct points x and y in X, there exist $V, W \in RC(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is almost contra-precontinuous, $f^{-1}(V)$ and $f^{-1}(W)$ are preopen subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is pre-T_1.

Definition 16. A topological space X is called p-ultra-connected if every two non-void preclosed subsets of X intersect.

Definition 17. A topological space X is called hyperconnected if every open set is dense [25].

Theorem 12. If X is p-ultra-connected and $f : X \to Y$ is almost contra-precontinuous and surjective, then Y is hyperconnected.

Proof. Assume that Y is not hyperconnected. Then there exists an open set V such that V is not dense in Y. Then there exist disjoint non-empty regular open subsets B_1 and B_2 in Y, namely $\text{int}(cl(V))$ and $Y \setminus cl(V)$. Since f is almost contra-precontinuous and onto, $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty preclosed subsets of X. By assumption, the p-ultra-connectedness of X implies that A_1 and A_2 must intersect. By contradiction, Y is hyperconnected.

Definition 18. A space X is called preconnected provided that X is not the union of two disjoint nonempty preopen sets [18].

Theorem 13. If $f : X \to Y$ is almost contra-precontinuous surjection and X is preconnected, then Y is connected.

Proof. Suppose that Y is not connected space. There exist nonempty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is almost contra-precontinuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are preopen in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not preconnected. This contradicts that Y is not connected assumed. Hence, Y is connected.

Definition 19. A space X is said to be

(1) strongly compact if every preopen cover of X has a finite subcover [8, 15].

(2) strongly countably compact if every countable cover of X by preopen sets has a finite subcover.

(3) strongly Lindelöf if every preopen cover of X has a countable subcover [15].
(4) S-Lindelof if every cover of X by regular closed sets has a countable subcover [12].

(5) countably S-closed if every countable cover of X by regular closed sets has a finite subcover [3].

(6) S-closed if every regular closed cover of X has a finite subcover [27].

Theorem 14. Let $f : X \to Y$ be an almost contra-precontinuous surjection. Then the following statements hold:

(1) if X is strongly compact, then Y is S-closed.

(2) if X is strongly Lindelof, then Y is S-Lindelof.

(3) if X is strongly countably compact, then Y is countably S-closed.

Proof. We prove only (1), the proofs of (2) and (3) being entirely analogous.

Let \(\{V_\alpha : \alpha \in I\} \) be any regular closed cover of Y. Since f is almost contra-precontinuous, then \(\{f^{-1}(V_\alpha) : \alpha \in I\} \) is a preopen cover of X and hence there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Therefore, we have $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and Y is S-closed.

Definition 20. A space X is said to be

(1) P-closed if every preclosed cover of X has a finite subcover.

(2) countably P-closed if every countable cover of X by preclosed sets has a finite subcover.

(3) P-Lindelof if every cover of X by preclosed sets has a countable subcover.

(4) nearly compact if every regular open cover of X has a finite subcover [21].

(5) nearly countably compact if every countable cover of X by regular open sets has a finite subcover [7, 22].

(6) nearly Lindelof if every cover of X by regular open sets has a countable subcover.

Theorem 15. Let $f : X \to Y$ be an almost contra-precontinuous surjection. Then the following statements hold:

(1) if X is P-closed, then Y is nearly compact.

(2) if X is P-Lindelof, then Y is nearly Lindelof.

(3) if X is countably P-closed, then Y is nearly countably compact.

Proof. We prove only (1), the proofs of (2) and (3) being entirely analogous.

Let \(\{V_\alpha : \alpha \in I\} \) be any regular open cover of Y. Since f is almost contra-precontinuous, then \(\{f^{-1}(V_\alpha) : \alpha \in I\} \) is a preclosed cover of X. Since X is P-closed,
there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Thus, we have $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and Y is nearly compact.

Definition 21. A space X is said to be mildly compact (mildly countably compact, mildly Lindelof) if every clopen cover (respectively, clopen countable cover, clopen cover) of X has a finite (respectively, a finite, a countable) subcover [24].

Theorem 16. If $f : X \to Y$ is an almost contra-precontinuous and almost continuous surjection and X is mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Proof. Let $V \in RC(Y)$. Then since f is almost contra-precontinuous and almost continuous, $f^{-1}(V)$ is preopen and closed in X and hence $f^{-1}(V)$ is clopen. Let $\{V_\alpha : \alpha \in I\}$ be any regular closed (respectively regular open) cover of Y. Then $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is a clopen cover of X and since X is mildly compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, we obtain $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$. This shows that Y is S-closed (respectively nearly compact).

The other proofs can be obtained similarly.

5. P-regular graphs

In this section, we define P-regular graphs and investigate the relationships between P-regular graphs and almost contra-precontinuous functions.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 22. A graph $G(f)$ of a function $f : X \to Y$ is said to be P-regular if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a preclosed set U in X containing x and $V \in RO(Y)$ containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 2. The following properties are equivalent for a graph $G(f)$ of a function:

1. $G(f)$ is P-regular;
2. for each point $(x, y) \in (X \times Y) \setminus G(f)$, there exist a preclosed set U in X containing x and $V \in RO(Y)$ containing y such that $f(U) \cap V = \emptyset$.
Proof. It is an immediate consequence of definition of P-regular graph and the fact that for any subsets $A \subseteq X$ and $B \subseteq Y$, $(A \times B) \cap G(f) = \emptyset$ if and only if $f(A) \cap B = \emptyset$.

Theorem 17. If $f : X \to Y$ is almost contra-precontinuous and Y is T_2, then $G(f)$ is P-regular graph in $X \times Y$.

Proof. First, suppose that Y is T_2. Let $(x, y) \in (X \times Y) \setminus G(f)$. It follows that $f(x) \neq y$. Since Y is T_2, there exist open sets V and W containing $f(x)$ and y, respectively, such that $V \cap W = \emptyset$. We have $\text{int}(cl(V)) \cap \text{int}(cl(W)) = \emptyset$. Since f is almost contra-precontinuous, $f^{-1}(\text{int}(cl(V)))$ is preclosed in X containing x. Take $U = f^{-1}(\text{int}(cl(V)))$. Then $f(U) \subseteq \text{int}(cl(V))$. Therefore, $f(U) \cap \text{int}(cl(W)) = \emptyset$ and $G(f)$ is P-regular in $X \times Y$.

Theorem 18. Let $f : X \to Y$ have a P-regular graph $G(f)$. If f is injective, then X is pre-T_1.

Proof. Let x and y be any two distinct points of X. Then, we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. By definition of P-regular graph, there exist a preclosed set U of X and $V \in RO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \emptyset$; hence $U \cap f^{-1}(V) = \emptyset$. Therefore, we have $y \notin U$. Thus, $y \in X \setminus U$ and $x \notin X \setminus U$. We obtain that $X \setminus U \in PO(X)$. This implies that X is pre-T_1.

Theorem 19. Let $f : X \to Y$ have a P-regular graph $G(f)$. If f is surjective, then Y is weakly T_2.

Proof. Let y_1 and y_2 be any distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) \setminus G(f)$. By definition of P-regular graph, there exist a preclosed set U of X and $F \in RO(Y)$ such that $(x, y_2) \in U \times F$ and $f(U) \cap F = \emptyset$; hence $y_1 \notin F$. Then $y_2 \notin Y \setminus F \in RC(Y)$ and $y_1 \in Y \setminus F$. This implies that Y is weakly T_2.

Acknowledgement. I would like to express my sincere gratitude to the referees and to the editors.
References

1. A. Chattopadhyay, Pre-T_0 and pre-T_1 topological spaces, *J. Indian Acad. Math.* 17 (1995), 156–159.