On Strongly 0-Prime Ideals in Near-Rings

P. DHEENA AND D. SIVAKUMAR

1Department of Mathematics, Annamalai University, Annamalai Nagar-608002, India
2Department of Mathematics, D.D.E., Annamalai University, Annamalai Nagar-608002, India
1e-mail: dheenap@yahoo.com

Abstract. In this paper we introduce the notion of strongly 0-prime ideals in near-rings similar to the notion introduced in rings. We give some characterizations of a near-ring N whose unique maximal nil ideal $N_r(N)$ coincides with the set of all its nilpotent elements $N(N)$ by using its minimal strongly 0-prime ideals.

2000 Mathematics Subject Classification: 16Y30.

1. Introduction

Throughout this paper N stands for a near-ring with identity. We use $N_r(N)$ and $N(N)$ to represent the unique maximal nil ideal and the set of all nilpotent elements of N respectively. Observe that $N_r(N) = N(N)$ if and only if $N_r(N)$ is a completely semiprime ideal of N (i.e., $a^2 \in N_r(N)$ implies $a \in N_r(N)$ for $a \in N$).

An ideal P of N is 0-prime if for any two ideals A and B of N, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal P of N is said to be completely prime if $ab \in P$ implies $a \in P$ or $b \in P$ for any $a, b \in N$ [1]. An ideal P of N is said to be strongly 0-prime if P is 0-prime and N/P has no non-zero nil ideals. A near-ring N is said to be strongly 0-prime if the ideal $\{0\}$ is strongly 0-prime. We have shown that if $M = \{x, x^2, x^3, \cdots\}$ where x is not a nilpotent element of N, then there exists a strongly 0-prime ideal P of N such that $P \cap M = \emptyset$. An ideal P of a near-ring is minimal strongly 0-prime ideal if P is minimal among strongly 0-prime ideals of N. Observe that every completely prime ideal of N is strongly 0-prime and every strongly 0-prime ideal is 0-prime but the converses do not hold.

An ideal I of N is said to have the insertion of factors property (or) simply IFP if $xy \in I$ implies $xNy \subseteq I$ for $x, y \in N$. An ideal I of N has the strict IFP if $xy \in I$ implies $\langle x \rangle N \langle y \rangle \subseteq I$ for $x, y \in N$. Observe that every completely semiprime ideal of N has the IFP. In a ring, IFP implies strict IFP but in a near-ring IFP does not imply strict IFP.
Recently, Kim and Kwak [3] characterized 2-primal rings in terms of their minimal prime ideals. Hong and Kwak [2] characterized a ring satisfying \(N'_r(R) = N(R) \) in terms of its minimal strongly prime ideals. So, in this paper we give some characterizations of a near-ring \(N \) whose unique maximal nil ideal \(N'_r(N) \) coincides with the set of all its nilpotent elements \(N(N) \) by using its minimal strongly 0-prime ideals. For the basic definition and terminology we refer to [4].

Example 1.1. Consider the near-ring \((N, +, \cdot)\) defined on the Klein’s four group \((N, +)\) with \(N = \{0, a, b, c\} \) where \(\cdot \) is defined as follows (as per scheme 2, p.408 [4]).

\[
\begin{array}{cccc}
 . & 0 & a & b & c \\
 0 & 0 & 0 & 0 & 0 \\
 a & 0 & 0 & a & a \\
 b & 0 & a & b & b \\
 c & 0 & a & c & c \\
\end{array}
\]

Clearly \(\{0, a\} \) is a strongly 0-prime ideal, since the ideals are \(\{0\}, \{0, a\} \) and \(\{0, a, b, c\} \).

Let \(N \) be a near-ring and let \((m)\text{Spec}(N)\) be the set of all (minimal) strongly 0-prime ideals of \(N \). For \(P \in \text{Spec}(N) \), we put

\[
O(P) = \{a \in N \mid aN^b = 0 \text{ for some } b \in N \setminus P \}.
\]

\[
\overline{O}(P) = \{a \in N \mid a^m \in O(P) \text{ for some positive integer } m \}.
\]

\[
O_p = \{a \in N \mid ab = 0 \text{ for some } b \in N \setminus P \}.
\]

\[
\overline{O}_p = \{a \in N \mid a^m \in O_p \text{ for some positive integer } m \}.
\]

\[
N(P) = \{a \in N \mid aN^b \subseteq N'_r(N) \text{ for some } b \in N \setminus P \}.
\]

\[
\overline{N}(P) = \{a \in N \mid a^m \in N(P) \text{ for some positive integer } m \}.
\]

\[
N_p = \{a \in N \mid ab \in N'_r(N) \text{ for some } b \in N \setminus P \}.
\]

\[
\overline{N}_p = \{a \in N \mid a^m \in N_p \text{ for some positive integer } m \}.
\]
Hong and Kwak [2] have defined \(O(P) \) in a ring \(R \) as \(O(P) = \{ a \in R \mid aRb = 0 \} \) for some \(b \in R \setminus P \}. But we have defined \(O(P) = \{ a \in R \mid aR\{b\} = 0 \} \) for some \(b \in R \setminus P \}. These two definitions coincide in rings. Suppose \(a \in O(P) \). Then \(aRb = 0 \) for some \(b \in R \setminus P \} \implies b \in (0 : aR) = \{ x \in R \mid aRx = 0 \} \), which is an ideal if \(R \) is a ring. Thus \(aRb = 0 \) implies \(aR\{b\} = 0 \).

We have shown that \(O(P) \) and \(N(P) \) are ideals of \(N \) and they are subsets of \(P \). Clearly \(O(P) \subseteq O_P \subseteq \overline{O}_P \), \(N(P) \subseteq N_P \subseteq \overline{N}_P \), \(\overline{O}(P) \subseteq \overline{O}_P \) and \(\overline{N}(P) \subseteq \overline{N}_P \). If \(P \) is a completely prime ideal of \(N \), then \(\overline{N}_P \) is a subset of \(P \). For a reduced near-ring \(N \), \(O(P) = O_p \) and \(\overline{O}(P) = \overline{O}_p = N(P) = N_p = \overline{N}(P) = \overline{N}_p \).

Lemma 1.2. \(O(P) \) and \(N(P) \) are ideals of \(N \) for any strongly 0-prime ideal \(P \) of \(N \).

Proof. Let \(P \) be any strongly 0-prime ideal of \(N \) and let \(a_1, a_2 \in O(P) \). Then \(a_1 N\{b_1\} = 0 \) for some \(b_1 \in N \setminus P \) and \(a_2 N\{b_2\} = 0 \) for some \(b_2 \in N \setminus P \). Since \(b_1 \), \(b_2 \in N \setminus P \) and \(N \setminus P \) is an \(m \)-system there exists \(b_1' \in \{b_1\} \) and \(b_2' \in \{b_2\} \) such that \(b_1' b_2' \in N \setminus P \). Let \(b_2 = b_1' b_2' \). For any \(n \in N \) and \(x \in \{b_2\} \), \((a_1 - a_2)nx = 0 \) implies \(a_1 - a_2 \in O(P) \). Let \(x \in O(P) \). Then \(xN\{b\} = 0 \) for some \(b \in N \setminus P \). Thus for \(n, n' \in N \) and \(b' \in \{b\} \), we have \((n(n' + x) - nn')n'b' = 0 \) implies \(n(n' + x) - nn' \) \(\in O(P) \) and \((xn)n'b' = 0 \) implies \(xn \in O(P) \). Therefore \(O(P) \) is an ideal of \(N \). Similarly one can show that \(N(P) \) is an ideal of \(N \).

Lemma 1.3. For a near-ring \(N \) and \(P \in \text{Spec} \, (N) \), we have the following:

(i) If \(O_p(N_p) \) is an ideal of \(N \) for any strongly 0-prime ideal of \(N \), then \(O_p(N_p) \) is a completely semiprime ideal of \(N \) if and only if \(O_p = \overline{O}_p (N_p = \overline{N}_p). \)

(ii) \(O(P)(N(P)) \) is a completely semiprime ideal of \(N \) if and only if \(O(P) = \overline{O}(P)(N(P) = \overline{N}(P)) \).

Proof.

(i) Let \(P \) be any strongly 0-prime ideal of \(N \). Suppose that \(O_p \) is a completely semiprime ideal of \(N \). Let \(a \in \overline{O}_p \). Then \(a^m b = 0 \) for some positive integer \(m \) and for some \(b \in N \setminus P \). Thus \(a^m \in O_p \) and this implies \(a \in O_p \) as \(O_p \) is completely semiprime. Therefore \(\overline{O}_p \subseteq O_p \) and hence \(\overline{O}_p = O_p \). The converse is obvious. Proof of part (ii) is similar to that of (i).
Theorem 1.4. If \(M = \{x, x^2, x^3, \cdots\} \) where \(x \) is not a nilpotent element of \(N \), then there exist a strongly 0-prime ideal \(P \) of \(N \) such that \(P \cap M = \emptyset \).

Proof. Let \(M = \{x, x^2, x^3, \cdots\} \) and \(S = \{I \mid I \cap M = \emptyset\} \), where \(I \) is an ideal of \(N \). Then \(S \) is non-empty as \(\{0\} \in S \). By Zorn’s Lemma, \(S \) has a maximal element say \(P \).

We claim that \(P \) is strongly 0-prime. First we show that \(P \) is 0-prime. Suppose \(I_1 \) and \(I_2 \) are ideals of \(N \) such that \(I_1 \supset P \) and \(I_2 \supset P \). Let \(a \in I_1 \cap M \) and \(b \in I_2 \cap M \). Then we have \(a = x^n \) and \(b = x^m \) for some positive integers \(n, m \). Therefore \(ab = x^{n+m} \in I_1 I_2 \cap M \) implies \(I_1 I_2 \cap M \neq \emptyset \) and hence \(I_1 I_2 \subseteq P \). Therefore \(P \) is 0-prime. If \(I / P \) is a non-zero nil ideal of \(N / P \), then \(I \subseteq P \) and so \(I \cap M \neq \emptyset \).

Let \(y \in I \cap M \). Then \(y = x^k \) for some positive integer \(k \). Since \(I / P \) is a nil ideal, \(x^k P = P \) for some positive integer \(m \). Thus \(x^{km} \in P \) which is a contradiction. Therefore \(P \) is a strongly 0-prime ideal of \(N \) such that \(P \cap M = \emptyset \).

Lemma 1.5. For a near-ring \(N \), \(N_r(N) = \cap \{P \mid P \) is a strongly 0-prime ideal of \(N\} \) = \(\cap \{P \mid P \) is a minimal strongly 0-prime ideal of \(N\} \).

Proof. Suppose \(N_r(N) \subseteq P \) for some \(P \in \text{Spec}(N) \). Then \(N_r(N) / P \) is a non-zero nil ideal of \(N / P \) which is a contradiction that \(P \) is a strongly 0-prime ideal of \(N \). Thus \(N_r(N) \subseteq P \) for all strongly 0-prime ideals \(P \) of \(N \) and so \(N_r(N) \subseteq \cap \{P \mid P \) is a strongly 0-prime ideal of \(N\} \).

If \(x^k \neq 0 \) for any positive integer \(k \) and if \(M = \{x, x^2, x^3, \cdots\} \) then by Theorem 1.4, there exists a strongly 0-prime ideal \(P \) such that \(P \cap M = \emptyset \). Thus \(x \notin P \) which is a contradiction. Therefore \(x^k = 0 \) for some positive integer \(k \). So \(x \in N_r(N) \). The other equality is obvious.

Lemma 1.6. For a near-ring, we have the following:

(i) \(N(N) \subseteq \cap_{P \in \text{Spec}(N)} \overline{O}(P) \subseteq \cap_{Q \in \text{Spec}(N)} \overline{O}(Q) \).

(ii) \(N_r(N) \subseteq \cap_{P \in \text{Spec}(N)} N(P) = \cap_{Q \in \text{Spec}(N)} N(Q) \).

Proof. (i) Let \(a \in N(N) \). Then \(a^n = 0 \) for some positive integer \(n \). Let \(P \) be any strongly 0-prime ideal and let \(b \in N \setminus P \). Since \(a^n = 0 \), \(a^n N(b) = 0 \). Thus \(a^n \in O(P) \).
and hence $a \in \overline{O}(P)$. Therefore $a \in \bigcap_{P \in \text{Spec}(N)} \overline{O}(P)$. The other inclusion is obvious.

(ii) Let $a \in N_r(N)$. Let P be any strongly 0-prime ideal of N. Then $aN \{b\} \subseteq N_r(N)$ for any $b \in N \setminus P$ which implies $a \in N(P)$. Thus $a \in P \bigcap_{P \in \text{Spec}(N)} N(P)$. But $P \bigcap_{P \in \text{Spec}(N)} N(P) \subseteq Q \bigcap_{Q \in \text{Spec}(N)} N(Q)$ always. Since $N(Q) \subseteq Q$ for each $Q \in m \text{ Spec}(N), \bigcap_{Q \in m \text{ Spec}(N)} N(Q) \subseteq N_r(N)$.

2. Strongly 0-prime ideals

Now we prove our main Theorem.

Theorem 2.1. For a near-ring N, the following statements are equivalent.

(i) $N_r(N) = N(N)$.

(ii) $N_r(N)$ is a completely semiprime ideal of N.

(iii) $N(P)$ is a completely semiprime ideal of N for each $P \in m \text{ Spec}(N)$.

(iv) $\overline{N}_p = \overline{N}(P) = N(P)$ for each $P \in m \text{ Spec}(N)$.

(v) $N(P) = N_p$ for each $P \in m \text{ Spec}(N)$.

(vi) $N_p \subseteq P$ for each $P \in m \text{ Spec}(N)$.

(vii) $N_{P \setminus N_r(N)} \subseteq P / N_r(N)$ for each $P \in m \text{ Spec}(N)$.

Proof.

(i)⇒(ii) Since $N_r(N) = N(N)$ for any x in N, $x^2 \in N_r(N)$ implies x^2 is nilpotent and hence $x \in N(N) = N_r(N)$. Therefore $N_r(N)$ is a completely semiprime ideal of N.

(ii)⇒(iii) Let P be a minimal strongly 0-prime ideal of N. Let $x \in N$ be such that $x^2 \in N(P)$. Then $x^2 \in N_r(N)$ for some $b \in N \setminus P$. Since $N_r(N)$ is a completely semiprime ideal, it has the IJP. So $xN \{b\} \subseteq N_r(N)$ which implies $xN \{b\} \subseteq N_r(N)$. Thus $x \in N(P)$ and hence $N(P)$ is completely semiprime.

(iii)⇒(i) Let $a \in N(N)$. Then $a^n = 0$ for some positive integer n. If $a \notin N_r(N)$, then there exists a minimal strongly 0-prime ideal P of N such that $a \notin P$. Since $N(P)$ is a completely semiprime ideal, $a^n = 0 \in N(P)$ implies $a \in N(P) \subseteq P$, a contradiction. So $a \in N_r(N)$.
(ii)⇒(iv) Let \(P \) be a minimal strongly 0-prime ideal of \(N \) and let \(a \in N_p \) for some \(a \in N \). Then \(a^n \in N_p \) for some positive integer \(n \). Thus \(a^n b \in N_r(N) \) for some \(b \in N \setminus P \). Since \(N_r(N) \) is a completely semiprime ideal of \(N \), it has the IFP. So we have \((ab)^n \in N_r(N) \) implies \(ab \in N_r(N) \) and hence \(a \in N(P) \). Thus \(\overline{N}_p \subseteq N(P) \).

But \(N(P) \subseteq N_p \subseteq \overline{N}_p \) and \(\overline{N}(P) = \overline{N}_p \). Therefore \(\overline{N}_p = \overline{N}(P) = N(P) \) for each \(P \in m \text{Spec}(N) \).

(iv)⇒(v)⇒(vi) These are obvious.

(vi)⇒(vii) Suppose that \(\overline{N} = N \setminus N_r(N) \) is not reduced. Then there exists \(a \in N \) such that \(\overline{a} \neq \overline{0} \). Hence \(a \notin N_r(N) \). So there exists some strongly 0-prime ideal \(P \) of \(N \) such that \(a \notin \overline{P} \) and this implies \(a \in \overline{N} \setminus \overline{P} \). But \(\overline{a}^2 = \overline{0} \) implies \(a \in N_p \subseteq \overline{P} \), a contradiction. Therefore \(N_r(N) = N(N) \).

Note that if \(R \) is a ring, then \(N_r(R) \) has the IFP if and only if \(N_r(R) \) is completely semiprime. Let us assume that \(N_r(R) \) has IFP and let \(x^2 \in N_r(R) \). Then \(xRx \subseteq N_r(R) \) and hence \(xRx \subseteq P \) for every strongly 0-prime ideal \(P \) of \(N \). So \(x \in P \) for every strongly 0-prime ideal \(P \). Therefore \(x \in N_r(R) \). Thus we have the following Corollary.

Corollary 2.2. [2, Theorem 8] For a ring \(R \), the following statements are equivalent.

(i) \(N_r(R) = N(R) \).

(ii) \(N_r(R) \) has the IFP.

(iii) \(N(P) \) has the IFP for each \(P \in m \text{Spec}(R) \).

(iv) \(\overline{N}_p = \overline{N}(P) = N(P) \) for each \(P \in m \text{Spec}(R) \).

(v) \(N(P) = N_p \) for each \(P \in m \text{Spec}(R) \).

(vi) \(N_p \subseteq P \) for each \(P \in m \text{Spec}(R) \).

(vii) \(N_{P/\overline{N}_p} \subseteq P / N_r(R) \) for each \(P \in m \text{Spec}(R) \).

Corollary 2.3. For a near-ring \(N \), assume that \(N_r(N) = N(N) \). If \(P = N(P) \) for each \(P \in \text{Spec}(N) \), then \(P \) is completely prime ideal of \(N \).
Proof. Let \(N_r(N) = N(N) \) and \(P = N(P) \) for each \(P \in \text{Spec}(N) \). Let \(ab \in P \) for \(a, b \in N \). Since \(N(P) \) is a completely semiprime ideal of \(N \), we have \(\langle a \rangle \langle b \rangle \subseteq P \) and hence \(a \in P \) or \(b \in P \). Therefore \(P \) is completely prime.

Theorem 2.4. For a near-ring \(N \), assume that \(N_r(N) = N(N) \). Then for each \(P \in \text{Spec}(N) \), the following statements are equivalent.

(i) \(P \in m \text{ Spec}(N) \).

(ii) \((N) = P \).

Proof. (i)\(\Rightarrow \) (ii) Let \(\in m \text{ Spec}(N) \) and \(a \in P \). Suppose \(a \notin N(P) \). Let \(S = \{a, a^2, a^3, \ldots\} \). If \(0 \in S \), then \(a^k = 0 \) for some positive integer \(k \) and hence \(a \in N(P) \), a contradiction. So \(0 \notin S \). Let \(L = N \setminus P \) and let \(T = \{a^b b_1 a^b b_2 \cdots b_n a^b \neq 0 \mid b_i \in L, t_i \in [0] \cup Z^+ \} \), where \(Z^+ \) is the set of all positive integers. Then \(L \subseteq T \). Let \(M = S \cup T \). Let us show that \(M \) is an \(m \)-system. If \(x, y \in S \), then \(xay \in S \). Let \(x \in S \), \(y \in T \) with \(x = a^s, y = a^t b_1 a^t b_2 \cdots b_n a^t \). If \(xay \neq 0 \), then \(xay \in T \). Suppose \(xay = 0 \). Since \(b_1, b_2 \in L \), there exists \(b'_1 \in \{b_1\} \) and \(b'_2 \in \{b_2\} \) such that \(b'_1 b'_2 \in L \). Since \(b'_1 b'_2, b_3 \in L \), there exists \(b'_3 \in \langle b'_1 b'_2 \rangle \subseteq \langle b_1 \rangle \langle b_2 \rangle \) and \(b'_3 \in \{b_3\} \) such that \(b'_1 b'_2 b'_3 \in L \). Continuing this process we get \(b'_{13 \ldots n-1} b'_{n-1,1} b_0 \in L \). Then there exists \(b'_{13 \ldots n-1} \in \langle b'_{13 \ldots n-2} b'_{n-1,1} \rangle \subseteq \langle \langle b_1 \rangle \langle b_2 \rangle \rangle \cdots \langle b_{n-1} \rangle \rangle \rangle \rangle \rangle \) and \(b'_n \in \{b_n\} \) such that \(w = b'_{13 \ldots n-1} b'_n \in L \). Since \(xay = 0 \), \(xay \in N_r(N) \). Thus \(a^s a^t b_1 a^t b_2 \cdots b_n a^t \in N_r(N) \). Since \(N_r(N) = N(N) \), \(N_r(N) \) is a completely semiprime ideal of \(N \) and hence \(b_1 b_2 \cdots b_n a^{1+s+t_0+\cdots+t_n} \in N_r(N) \). Choose \(m = 1 + s + t_0 + \cdots + t_n \). Then \(b_1 b_2 \cdots b_n a^m \in N_r(N) \). Since \(N_r(N) \) has the IFP, \(\langle b_1 \rangle \langle b_2 \rangle \cdots \langle b_n \rangle \langle a^m \rangle \subseteq N_r(N) \). This implies \(\langle \langle b_1 \rangle \langle b_2 \rangle \rangle \cdots \langle b_n \rangle \langle a^m \rangle \rangle \subseteq N_r(N) \). Continuing this process, we get \(\cdots \\langle \langle b_1 \rangle \langle b_2 \rangle \rangle \cdots \langle b_{n-1} \rangle \rangle \langle b_n \rangle \langle a^m \rangle \rangle \subseteq N_r(N) \) and so \(b'_{13 \ldots n-1} b'_n a^m \in N_r(N) \). Hence \(wa^m \in N_r(N) \) where \(w = b'_{13 \ldots n-1} b'_n \). Since \(N_r(N) \) is a completely semiprime ideal, \((aw)^m \in N_r(N) \) and hence \(aw \in N_r(N) \). Thus \(a \in N_r = N(P) \), which is a contradiction.

Similarly, one can show that if \(x, y \in T \) then \(xay \neq 0 \) and \(xay \in T \). This shows that \(M \) is an \(m \)-system that is disjoint from \((0) \). Hence there is a \(0 \)-prime ideal \(Q \) that is disjoint from \(M \) such that \(a \notin Q \) and \(\subseteq P \). Now we claim that \(Q \) is strongly
0-prime. Suppose I/Q is a non-zero nil ideal of N/Q. Since $Q \subset I$, $I \cap M \neq \emptyset$.

If $a^m \in I$ for some positive integer m, then $a^m + Q$ is a nilpotent element in N/Q. Thus $a^{mk} \in Q$ for some positive integer k, which is a contradiction. So we choose $x \in I \cap T$. Then $x \in T$ implies $0 \neq x' \in T$ for any positive integer t. Since $x + Q$ is nilpotent in N/Q, $x' \in Q$ for some positive integer s, which is again a contradiction.

Therefore Q is a strongly 0-prime ideal of N such that $a \notin Q$, a contradiction. Hence $N(P) = P$.

(ii)\Rightarrow(i) If $Q \subseteq P$ for $Q \in m \text{Spec}(N)$, then $N(P) \subseteq N(Q) \subseteq Q \subseteq P = N(P)$. Therefore $P \in m \text{Spec}(N)$.

Corollary 2.5. [2, Theorem 12] For a ring R, assume that $N_r(R) = N(R)$. Then for each $P \in \text{Spec}(R)$, the following statements are equivalent.

(i) $P \in m \text{Spec}(R)$.

(ii) $N(P) = P$.

A right ideal I of a near-ring N is called right (left) symmetric if $xyz \in I$ implies $xyz \in I(yxz \in I)$. An ideal I of N is symmetric if it is both right and left symmetric. An ideal I of N is called semi-symmetric if $x_1, x_2, \cdots x_n \in I$ implies $\langle x_1 \rangle \langle x_2 \rangle \cdots \langle x_n \rangle \subseteq I$.

Theorem 2.6. For a near-ring N, the following statements are equivalent.

(i) $N_r(N) = N(N)$.

(ii) P is a completely prime ideal of N for each $P \in m \text{Spec}(N)$.

(iii) P is a completely semiprime ideal of N for each $P \in m \text{Spec}(N)$.

(iv) P has the strict IFP for each $P \in m \text{Spec}(N)$.

(v) P is a symmetric ideal of N for each $P \in m \text{Spec}(N)$.

(vi) P is a semi-symmetric ideal of N for each $P \in m \text{Spec}(N)$.

(vii) $ab \in P$ implies $bNa \subseteq P$ for $a, b \in N$ and $P \in m \text{Spec}(N)$.

Proof.

(i)\Rightarrow(ii). It follows from Theorem 2.4 and Corollary 2.3.

(ii)\Rightarrow(iii)\Rightarrow(iv). These are obvious.

(iv)\Rightarrow(i). It follows from replacing $N(P)$ by P in the proof of (c)\Rightarrow(a) of Theorem 2.1.

(ii)\Rightarrow(v)\Rightarrow(vi)\Rightarrow(vii) and (vii)\Rightarrow(ii) are trivial.
Corollary 2.7. [2, Corollary 13] For a ring R, the following statements are equivalent.

(i) $N_c(R) = N(R)$.
(ii) P is a completely prime ideal of R for each $P \in m\text{Spec}(R)$.
(iii) P is a completely semiprime ideal of R for each $P \in m\text{Spec}(R)$.
(iv) P has the IFP for each $P \in m\text{Spec}(R)$.
(v) P is a symmetric ideal of R for each $P \in m\text{Spec}(R)$.
(vi) $xy \in P$ implies $yRx \subseteq P$ for $x, y \in R$ and $P \in m\text{Spec}(R)$.

References