On Full Hilbert C*-Modules

MOHAMMAD SAL MOSLEHIAN
Department of Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
e-mail: msalm@math.um.ac.ir

Abstract. Let M be both a full Hilbert A-module and a full Hilbert B-module. In this paper we prove that a map $\phi : A \to B$ is an isometrically *-isomorphism iff it satisfies $ax = \phi(a)x$ and $\phi(<x,y>_A) = <x,y>_B$ where $a \in A, x, y \in M$. We also show that the fullness condition can not be dropped.

1. Introduction

Hilbert C*-modules are used as a powerful tool in C*-algebraic quantum group theory, K- and KK-theory, induced representations of C*-algebras and Morita equivalence. Some sources of references to the subject are [1] and [2].

The goal of this paper is to show that if M is full Hilbert C*-modules over C*-algebras A and B and $\phi : A \to B$ is a map, then ϕ is *-isomorphism iff $ax = \phi(a)x$ and $\phi(<x,y>_A) = <x,y>_B$ where $a \in A, x, y \in M$. We show that without any one of the assumptions of M being full the result does not in general hold. Our result is interesting in its own.

Definition 1.1. Suppose A is a C*-algebra. Let M be a complex linear space which is a right A-module and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C, a \in A$ and $x \in M$. M is called a pre-Hilbert A-module if there exists an (A-valued) inner product $<\cdot,\cdot>: M \times M \to A$ satisfying:

1. $\langle x, x \rangle \geq 0$
2. $\langle x, x \rangle = 0$, iff $x = 0$
3. $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle$
4. $\langle x, y \rangle = \langle y, x \rangle^*$
5. $\langle ax, y \rangle = a \langle x, y \rangle$.
A pre-Hilbert A-module is called a Hilbert A-module or Hilbert C^*-module over A, if it is complete with respect to the norm $\|x\| = \sqrt{\langle x, x \rangle}$. M is said to be full if the linear span of $\{\langle x, y \rangle; x, y \in M\}$ is dense in A.

Example 1.2. Let A be a C^*-algebra. Then A together with its product as the usual action is a left A-module. In addition it equipped with inner product $\langle a, b \rangle = ab^*$ is a full Hilbert A-module.

2. Main theorem

Let M be a (full) Hilbert B-module and $\phi : A \rightarrow B$ a *-isomorphism of C^*-algebras. Define the module action by $xaax \phi = a$ and A-valued inner product by $\langle \phi(x), \phi(y) \rangle_B = \langle x, y \rangle_A$. Then it is straightforward to show that M is a (full) Hilbert A-module. We are going to establish a converse statement to the above.

Lemma 2.1. Let N be a full Hilbert C^*-module over C and $u \in C$. Then $ux = 0$ for all $x \in N$ iff $u = 0$.

Proof. Since N is full, there exists $\{u_n\}$ in $\langle N, N \rangle$ such that $u = \lim_n u_n$.

Each u_n is of the form $u_n = \sum_{i=1}^k <x_{i,n}, y_{i,n}>$ in which $x_{i,n}, y_{i,n} \in N$. Hence

$$uu^* = u \lim_n u_n^* = \lim_n uu_n^* = \lim_n \left(u \sum_{i=1}^k <y_{i,n}^*, x_{i,n}> \right) = \lim_n \sum_{i=1}^k <u_{i,n}^* y_{i,n}, x_{i,n}> = 0.$$

Hence $u = 0$.

Theorem 2.2. Let M be both a full Hilbert A-module and a full Hilbert B-module and there exist a map $\phi : A \rightarrow B$ in such a way that $ax = \phi(a)x$ and $\phi(x, y)_A = <x, y>_B$. Then ϕ is an (isometrically) *-isomorphism.

Proof. If $a_n \rightarrow 0$ and $\phi(a_n) \rightarrow b$, then $a_nx \rightarrow 0$ and $\phi(a_n)x \rightarrow bx$. But $\phi(a_n)x \rightarrow 0$. Hence $bx = 0$. By Lemma 2.1 $b = 0$. Thus ϕ is continuous. $\phi(ab) = \phi(a)\phi(b)$.

Similarly one can show that ϕ is linear.
If \(a \in A \), then we may assume that \(a = \lim_{n} u_n, u_n = \sum_{i=1}^{k_n} <x_{i,n}, y_{i,n}>_A \) where \(x_{i,n}, y_{i,n} \in M \). Hence

\[
\phi(a^*) = \lim_{n} \phi(u_n^*) = \lim_{n} \sum_{i=1}^{k_n} \phi< y_{i,n}, x_{i,n}>_A = \lim_{n} \sum_{i=1}^{k_n} \{ y_{i,n}, x_{m} \}_B
\]

\[
= \left(\lim_{n} \sum_{i=1}^{k_n} \{ x_{i,n}, y_{i,n} \}_B \right)^* = (\phi(a))^*
\]

If \(\phi(a) = 0 \), then \(ax = \phi(a)x = 0 \) for all \(x \in M \). Hence \(a = 0 \). \(\phi \) is therefore one to one.

Given \(b \in B \) and \(\varepsilon > 0 \), there are \(\{x_i\}_{1 \leq i \leq n}, \{y_i\}_{1 \leq i \leq n} \) in \(M \) such that

\[
\left\| b - \sum_{i=1}^{n} <x_i, y_i>_B \right\| < \varepsilon, \text{ Hence } \left\| b - \phi \sum_{i=1}^{n} <x_i, y_i>_A \right\| < \varepsilon. \text{ Therefore } \phi \text{ has a dense range. But } \phi \text{ is a } ^*\text{-homomorphism from } A \text{ into } B, \text{ so that its range is closed. Thus } \phi \text{ is a } ^*\text{-isomorphism.}
\]

Remark 2.3. The result may fail, if any one of the conditions of \(M \) being full is dropped.

For example, first, take \(A \) to be a von Neumann algebra acting on a Hilbert space which has a central projection \(p \neq 0, I \). Put \(B = M = Ap \) and consider \(M \) as a Hilbert \(B \)-module and a Hilbert \(A \)-module with the usual actions and the inner products \(<x, y>_A = xy^* \). Clearly \(M \) is not full \(A \)-module. Then \(\phi: A \rightarrow B, \phi(a) = ap \) has evidently the properties \(ax = \phi(a)x \) and \(\phi(<x, y>_A) = <x, y>_B \), but is not one to one (and hence is not isometry).

Second, let \(A \) and \(B \) be arbitrary \(C^* \)-algebras and \(A \) be a proper subset of \(B \). Put \(M = A \) and consider it as a Hilbert \(A \)-module and a Hilbert \(B \)-module such above. Clearly \(M \) is not full \(B \)-module. Then the inclusion map \(\phi: A \rightarrow B \) satisfies obviously \(ax = \phi(a)x \) and \(\phi(<x, y>_A) = <x, y>_B \), but is not surjective.

References

Keywords and phrases: Full Hilbert \(C^* \)-modules.

Mathematics Subject Classification: 46L05