The Neutrix Product of the Distributions $x^\lambda \ln x$ and $x^{-\lambda - r}$

1BRIAN FISHER and 2FATMA AL-SIREHY
1Department of Mathematics and Computer Science, Leicester University, Leicester, LE1 7RH, England
e-mail: fbr@le.ac.uk
2P.O. Box 32477, Jeddah, Saudi Arabia
e-mail: gep3128@kaau.edu.sa

Abstract. The neutrix product of the distributions $x^\lambda \ln x$ and $x^{-\lambda - r}$ is evaluated for $\lambda = 0, \pm 1, \pm 2, \cdots$ and $r = 1, 2, \cdots$.

In the following, we let N be the neutrix, see van der Corput [1], having domain $N = \{1, 2, \cdots, n, \cdots\}$ and range the real numbers, with negligible functions finite linear sums of the functions

$$n^\lambda \ell n^{-1} n, \ell n^r n : \lambda > 0, r = 1, 2, \cdots$$

and all functions which converge to zero in the normal sense as n tends to infinity.

We now let $\rho(x)$ be any infinitely differentiable function having the following properties:

(i) $\rho(x) = 0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x) = \rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) \, dx = 1$.

Putting $\delta_n(x) = n \rho(nx)$ for $n = 1, 2, \cdots$, it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.
Now let D be the space of infinitely differentiable functions with compact support and let D' be the space of distributions defined on D. Then if f is an arbitrary distribution in D', we define

$$f_n(x) = \left(f^* \delta_n \right)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for $n = 1, 2, \ldots$. It follows that $\{f_n\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f.

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D' for which on the interval (a, b), f is the k-th derivative of a locally summable function F in $L^p(a, b)$ and $g^{(k)}$ is a locally summable function in $L^q(a, b)$ with $1/p + 1/q = 1$. Then the product $fg = gf$ of f and g is defined on the interval (a, b) by

$$fg = \sum_{i=0}^{k} \binom{k}{i} (-1)^i [Fg^{(i)}]^{(k-i)}.$$

The following definition for the non-commutative neutrix product of two distributions was given in [3] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D' and let $g_n = g^* \delta_n$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$N - \lim_{n \to \infty} \left\{ fg_n, \phi \right\} = \left\langle h, \phi \right\rangle,$$

for all functions ϕ in D with support contained in the interval (a, b). Note that if

$$\lim_{n \to \infty} \left\{ fg_n, \phi \right\} = \left\langle h, \phi \right\rangle,$$

we simply say that the product $f \cdot g$ exists and equals h.

This definition of the neutrix product is in general non-commutative. It is obvious that if the product $f \cdot g$ exists then the neutrix product $f \circ g$ exists and $f \cdot g = f \circ g$.

Further, it was proved in [3] that if the product fg exists by Definition 1 then the product $f \circ g$ exists by Definition 2 and $fg = f \circ g$.

The next two theorems were proved in [3].
The Neutrix Product of the Distributions x^l in x_-^r and x_+^r

Theorem 1. Let f and g be distributions and suppose that the neutrix products $f \circ g$ and $f \circ g'$ exist on the interval (a, b). Then the neutrix product $f' \circ g$ exists and

$$ (f \circ g)' = f' \circ g + f \circ g', $$
on the interval (a, b).

Theorem 2. The neutrix product $x^l_+ \circ x_-^r$ exists and

$$ x^l_+ \circ x_-^r = -\frac{\pi \csc (\pi \lambda)}{2 (r-1)!} \delta^{(r-1)}(x) \quad (1) $$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $r = 1, 2, \ldots$.

We now prove the following theorem:

Theorem 3. The neutrix product $x^l_+ \ln x_+ \circ x_-^r$ exists and

$$ x^l_+ \ln x_+ \circ x_-^r = -\frac{\pi \csc (\pi \lambda)}{2 (r-1)!} \left[2 \psi(\lambda + r) - \Gamma'(1) \right] \delta^{(r-1)}(x) \quad (2) $$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $r = 1, 2, \ldots$ where Γ denotes the Gamma function and

$$ \psi(\lambda + r) = \frac{\Gamma'(\lambda + r)}{\Gamma(\lambda + r)} $$

Proof. We will first of all suppose that $-1 < \lambda < 0$. Then $x^l_+ \ln x_+$ and $x_-^{\lambda-1}$ are locally stumble functions and

$$ x_-^{\lambda-1} = \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + r)} (x_-^{\lambda-1})^{(r-1)} $$

Thus

$$ (x_-^{\lambda-1})_n = x_-^{\lambda-1} * \delta^n_n(x) = \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + r)} \int_x^{1/n} (t-x)^{-\lambda-1} \delta^{(r-1)}(t) dt $$

for $r = 1, 2, \ldots$ and so
\[
\frac{\Gamma(\lambda + r)}{\Gamma(\lambda + 1)} \int_{-\infty}^{\infty} x^\lambda \ell_n x, \left(\frac{x^{r-1}}{r} \right) x^m \, dx = \int_{0}^{1/n} x^{\lambda + m} \ell_n x \int_{x}^{1/n} (t - x)^{-\lambda - 1} \delta_n(t) \, dt \, dx \\
= \int_{0}^{1/n} \delta_n^{(r-1)}(t) \int_{0}^{t} x^{\lambda + m} \ell_n x \, dx \, dt \\
= \int_{0}^{1/n} t^n \delta_n^{(r-1)}(t) \int_{0}^{1} \ell_n(tu)(1 - u)^{-\lambda - 1} \, du \, dt \\
= B(\lambda + m + 1, -\lambda) \int_{0}^{1/n} t^n \ell_n t \delta_n^{(r-1)}(t) \, dt \\
+ B_{1,0}(\lambda + m + 1, -\lambda) \int_{0}^{1/n} t^n \delta_n^{(r-1)}(t) \, dt,
\]

where the substitution \(x = tv \) has been made, \(B \) denotes the Beta function and in general

\[
B_{p,q}(\lambda, \mu) = \frac{\partial^{p+q}}{\partial \lambda^p \partial \mu^q} B(\lambda, \mu)
\]

Making the substitution \(nt = y \). We have

\[
\int_{0}^{1/n} t^n \delta_n^{(r-1)}(t) \, dt = n^{r-m-1} \int_{0}^{1} y^{m+n} \rho^{(r-1)}(y) \, dy,
\]
(4)

\[
\int_{0}^{1/n} t^n \ell_n t \delta_n^{(r-1)}(t) \, dt = -n^{r-m-1} \ell_n \int_{0}^{1} y^{m+n} \rho^{(r-1)}(y) \, dy \\
+ n^{r-m-1} \int_{0}^{1} y^{m+n} \ell_n y \rho^{(r-1)}(y) \, dy
\]
(5)

for \(m = 0, 1, 2, \ldots \).

In particular, when \(m = r - 1 \), it is easily proved by induction that

\[
\int_{0}^{1} y^{r-1} \rho^{(r-1)}(y) \, dy = \frac{1}{2} (-1)^{r-1} (r-1)!,
\]
(6)

\[
\int_{0}^{1} y^{r-1} \ell_n y \rho^{(r-1)}(y) \, dy = (-1)^{r-1} (r-1)! \left[\frac{1}{2} \phi(r-1) + c(\rho) \right],
\]
(7)

for \(r = 1, 2, \ldots \), where

\[
\phi(r) = \begin{cases}
\sum_{i=1}^{r-1} i, & r = 1, 2, \ldots \\
0, & r = 0
\end{cases}
\]
and
\[c(\rho) = \int_0^1 \ell n t \rho(t) \, dt. \]

Further, putting
\[K = - \frac{\Gamma(\lambda + 1)}{\lambda \Gamma(\lambda + r)} \sup_x \left\{ \left| \rho^{(r-1)}(x) \right| \right\} > 0, \]
we have
\[\left| x^{-\lambda-r}_n \right| = \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + r)} \left[\int_{nx}^{\infty} (u - nx)^{-\lambda-1} u^{r-1} \rho^{(r-1)}(u) \, du \right] \]
\[\leq -\lambda Kn_{\lambda+r}^{1+n} (u - nx)^{-\lambda-1} \, du \]
\[= Kn_{\lambda+r}^{1+n} \]
and so when \(m = r, \) we have
\[\left| \int_{-\infty}^{\infty} x^r \ell n x_n (x^{-\lambda-r}_n) x^r \, dx \right| \leq \int_0^{1/\lambda} \left| x^\lambda \ell n x (x^{-\lambda-r}_n) x^r \right| \, dx \leq -\lambda^{-1} Kn^{-1} \ell n n, \]
(8)

Now let \(\varphi \) be an arbitrary function in \(D. \) Then
\[\varphi(x) = \sum_{m=0}^{r-1} \frac{x^m}{m!} \phi^{(m)}(0) + \frac{x^r}{r!} \phi^{(r)}(\xi x), \]
where \(0 < \xi < 1 \) and so
\[\left(x^r \ell n x_n (x^{-\lambda-r}_n) \varphi(x) \right) = \sum_{m=0}^{r-1} \frac{x^m}{m!} \phi^{(m)}(0) \left[\int_{-\infty}^{\infty} x^r \ell n x_n (x^{-\lambda-r}_n) x^m \, dx \right] \]
\[+ \frac{1}{r!} \int_{-\infty}^{\infty} x^r \ell n x_n (x^{-\lambda-r}_n) x^r \phi^{(r)}(\xi x) \, dx. \]
(9)

Since
\[\left| \int_{-\infty}^{\infty} x^r \ell n x_n (x^{-\lambda-r}_n) x^r \phi^{(r)}(\xi x) \, dx \right| \leq \sup_x \left\{ \phi^{(r)}(x) \right\} \left| (-\lambda^{-1}) Kn^{-1} \ell n n, \right. \]
it follows from equations (3) to (9) that
\[N = \lim_{n \to \infty} \frac{\Gamma(\lambda + r)}{\Gamma(\lambda + 1)} \{ x_+^\lambda \ln x_+ + x_-^{-\lambda - r} \} \phi(x) \]
\[= (-1)^{r-1} B(\lambda + r, -\lambda) \left[\frac{1}{2} \phi(r-1) + c(\rho) \right] \phi^{(r-1)}(0) + \frac{1}{2} (-1)^{r-1} B_{1,0}(\lambda + r, -\lambda) \phi^{(r-1)}(0). \]

(10)

Differentiating the identity
\[B(\lambda, \mu) = \frac{\Gamma(\lambda+\mu)}{\Gamma(\lambda + \mu)} \]

partially with respect to \(\lambda \), it follows that
\[B_{1,0}(\lambda + r, -\lambda) = \frac{\Gamma'(\lambda + r) \Gamma(-\lambda)}{(r-1)!} - \frac{\Gamma(\lambda + r) \Gamma'(-\lambda) \Gamma'(r)}{[(r-1)!]^2} \]

(11)

and taking logs and differentiating the identity
\[\Gamma(\lambda + r) = (\lambda + r - 1) \cdots (\lambda + 1) \Gamma(\lambda + 1) \]

gives
\[\psi(\lambda + r) = \frac{\Gamma'(\lambda + r)}{\Gamma(\lambda + r)} = \sum_{i=1}^{r-1} (\lambda + r - i)^{-1} + \psi(\lambda + 1). \]

(12)

In particular, we have
\[\frac{\Gamma'(r)}{(r-1)!} = \phi(r-1) + \Gamma'(1). \]

(13)

It now follows from equations (11) and (13) that
\[\frac{\Gamma'(\lambda + 1)}{\Gamma(\lambda + r)} B_{1,0}(\lambda + r, -\lambda) = \frac{\Gamma(\lambda + 1) \Gamma(-\lambda)}{(r-1)!} \left[\frac{\Gamma'(\lambda + r)}{\Gamma(\lambda + r)} - \frac{\Gamma'(r)}{(r-1)!} \right] \]
\[= -\frac{\pi \text{cosec}(\pi \lambda)}{(r-1)!} \left[\psi(\lambda + r) - \phi(r-1) - \Gamma'(1) \right]. \]

(14)
The Neutrix Product of the Distributions $x^\lambda_+ \ln x_+$ and $x^{-\lambda-\rho}$

Further,

$$\frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + r)} B(\lambda + r, -\lambda) = -\frac{\pi \cosec (\pi \lambda)}{(r-1)!}$$ \hspace{1cm} (15)$$

and equation (2) now follows from equations (10), (14) and (15) for the case $-1 < \lambda < 0$.

Now let us suppose that equation (2) holds when $-k < \lambda < -k + 1$ and $r = 1, 2, \cdots$, where k is a positive integer. This is true when $k = 1$. Thus if $-k - 1 < \lambda < -k$ it follows from our assumption that

$$x^\lambda_+ \ln x_+ o x^{-\lambda-1-\rho} = \frac{\pi \cosec (\pi \lambda)}{2(r-1)!} \left[2c(\rho) + \psi (\lambda + 1 + r) - \Gamma'(1) \right] \delta^{(r-1)}(x),$$

for $r = 1, 2, \cdots$. It follows from Theorem 1 that

$$\left[(\lambda + 1) x^\lambda_+ \ln x_+ + x^\lambda_+ \right] o x^{-\lambda-r-1} + (\lambda + r + 1) x^{\lambda+1}_+ \ln x_+ o x^{-\lambda-r-2}$$

$$= \frac{\pi \cosec (\pi \lambda)}{2(r-1)!} \left[2c(\rho) + \psi (\lambda + r + 1) - \Gamma'(1) \right] \delta^{(r)}(x)$$

$$= \frac{(\lambda + 1) x^\lambda_+ \ln x_+ o x^{-\lambda-r-1} - \frac{\pi \cosec (\pi \lambda)}{2r!} \delta^{(r)}(x)}{\delta^{(r)}(x)}$$

$$+ \frac{(\lambda + r + 1) \pi \cosec (\pi \lambda)}{2r!} \left[2c(\rho) + \psi (\lambda + 2r + 1) - \Gamma'(1) \right] \delta^{(r)}(x).$$

Thus

$$(\lambda + 1) x^\lambda_+ \ln x_+ o x^{-\lambda-r-1} =$$

$$-\frac{(\lambda + 1) \pi \cosec (\pi \lambda)}{2r!} \left[2c(\rho) + \psi (\lambda + r + 1) - \psi (\lambda + r + 2) \right] \delta^{(r)}(x) +$$

$$+ \frac{\pi \cosec (\pi \lambda)}{2(r-1)!} \left[r^{-1} + \psi (\lambda + r + 1) - \psi (\lambda + r + 2) \right] \delta^{(r)}(x),$$

$$-\frac{(\lambda + 1) \pi \cosec (\pi \lambda)}{2r!} \left[2c(\rho) + \psi (\lambda + r + 1) - \Gamma'(1) \right] \delta^{(r)}(x),$$

since, from equation (12), we have

$$\psi (\lambda + r + 2) - (\lambda + r + 1)^{-1} = \psi (\lambda + r + 1)$$
and so
\[r^{-1} + \psi(\lambda + r + 1) - \psi(\lambda + r + 2) = \frac{\lambda + 1}{r(\lambda + r + 1)}. \]

Equation (2) now follows by induction for \(\lambda < 0, \lambda \neq -1, -2, \ldots \) and \(r = 2, 3, \ldots \).

To cover the case \(r = 1 \), we note the product \(x_{-}^{\lambda+1} \ell n x_{-} \cdot x_{-}^{\lambda-1} \) exists by Definition 1 and
\[x_{-}^{\lambda+1} \ell n x_{-} \cdot x_{-}^{\lambda-1} = 0 \]
for all \(\lambda \).

Let us suppose that equation (2) holds when \(-k < \lambda < -k + 1 \) and \(r = 1 \), where \(k \) is a positive integer. This is true when \(k = 1 \). Thus if \(-k + 1 < \lambda < -k \), it follows from our assumption that
\[x_{-}^{\lambda+1} \ell n x_{-} o x_{-}^{\lambda-2} = \frac{1}{2} \pi \cosec (\pi \lambda) \left[2c(\rho) + \psi(\lambda + 2) - \Gamma'(1) \right] \delta(x). \]

It follows from equation (16) and Theorem 1 that
\[
\left[(\lambda + 1)x_{+}^{\lambda+1} \ell n x_{+} + x_{+}^{\lambda+1} \right] o x_{-}^{\lambda-1} + (\lambda + 1)x_{+}^{\lambda+1} \ell n x_{+} o x_{-}^{\lambda-2} = 0 \\
= (\lambda + 1)x_{+}^{\lambda+1} \ell n x_{+} o x_{-}^{\lambda-1} - \frac{1}{2} \pi \cosec (\pi \lambda) \delta(x) \\
+ \frac{1}{2} (\lambda + 1) \pi \cosec (\pi \lambda) \left[2c(\rho) + \psi(\lambda + 2) - \Gamma'(1) \right] \delta(x) \\
= (\lambda + 1)x_{+}^{\lambda+1} \ell n x_{+} o x_{-}^{\lambda-1} \\
+ \frac{1}{2} (\lambda + 1) \pi \cosec (\pi \lambda) \left[2c(\rho) + \psi(\lambda + 1) - \Gamma'(1) \right] \delta(x)
\]

Equation (2) now follows by induction for \(\lambda < 0, \lambda \neq -1, -2, \ldots \) and \(r = 1 \).

Now let us suppose that equation (2) holds when \(k - 1 < \lambda < k \) and \(r = 1, 2, \ldots \), where \(k \) is a positive integer. This true when \(k = 0 \). Then for an arbitrary function \(\phi \) in \(D \) we have
\[
\left\{ x_{+}^{\lambda+1} \ell n x_{+} (x_{-}^{\lambda-1} - r) \cdot \phi(x) \right\} = \left\{ x_{+}^{\lambda+1} \ell n x_{+} (x_{-}^{\lambda-1} - r) \cdot \psi(x) \right\},
\]
where \(\psi(x) = x \varphi(x) \) is also in \(D \). It follows from our assumption with \(k-1 < \lambda < k \) that

\[
N = \lim_{n \to \infty} \left\{ x^\lambda_+ \ln x_+ (x^{\lambda-r-1}_-) \varphi(x) \right\} \\
= -\frac{(-1)^r \pi \csc (\pi \lambda)}{2r!} \left(2c(\rho) + \psi(\lambda + r + 1) - \Gamma'(1) \right) \varphi^{(r)}(0)
\]

and so

\[
N = \lim_{n \to \infty} \left\{ x^{\lambda+1}_+ \ln x_+ (x^{\lambda-r-1}_-) \varphi(x) \right\} \\
= -\frac{(-1)^r \pi \csc (\pi \lambda)}{2(r-1)!} \left(2c(\rho) + \psi(\lambda + r + 1) - \Gamma'(1) \right) \varphi^{(r-1)}(0)
\]

Equation (2) now follows by induction for \(\lambda > 0, \lambda \neq 1, 2, \cdots \) and \(r = 1, 2, \cdots \), completing the proof of the theorem.

Corollary 3.1. The neutrix product \(x^\lambda_+ \ln x_+ o x^{\lambda-r}_- \) exists and

\[
x^\lambda_+ \ln x_+ o x^{\lambda-r}_- = \frac{(-1)^r \pi \csc (\pi \lambda)}{2(r-1)!} \left(2c(\rho) + \psi(\lambda + r) - \Gamma'(1) \right) \delta^{(r-1)}(x) \quad (17)
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \) and \(r = 1, 2, \cdots \).

Proof. Equation (17) follows on replacing \(x \) by \(-x\) in equation (2).

Theorem 4. The neutrix product \(x^\lambda_+ o x^{\lambda-r}_- \ln x_+ \) exists and

\[
x^\lambda_+ \ln x_+ o x^{\lambda-r}_- = \frac{\pi \csc (\pi \lambda)}{2(r-1)!} \left(2c(\rho) + \psi(-\lambda - r + 1) - \Gamma'(1) \right) \delta^{(r-1)}(x) \quad (18)
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \cdots \) and \(r = 1, 2, \cdots \).

Proof. Differentiating equation (1) partially with respect to \(\lambda \) we get

\[
x^\lambda_+ \ln x_+ o x^{\lambda-r}_- - x^\lambda_+ o x^{\lambda-r}_- \ln x_- = \frac{\pi^2 \cot(\pi \lambda) \csc(\pi \lambda)}{2(r-1)!} \delta^{(r-1)}(x)
\]
and on using equation (2) it follows that

\[x_+^\lambda \circ x_-^{\lambda-r} \ln x_- = -\frac{\pi \csc (\pi \lambda)}{2 (r-1)!} \left[\pi \cot (\pi \lambda) + 2c (\rho) + \psi (\lambda + r) - \Gamma' (1) \right] \delta^{(r-1)} (x). \]

(19)

Taking logs and differentiating the identity

\[\Gamma (-\lambda) \Gamma (\lambda + 1) = (-1)^{r-1} \Gamma (-\lambda - r + 1) \Gamma (\lambda + r) = -\pi \csc (\pi \lambda) \]

gives

\[-\psi (-\lambda - r + 1) + \psi (\lambda + r) = -\pi \cot (\pi \lambda) \]

(20)

and equation (18) follows from equations (19) and (20).

Corollary 4.1. The neutrix product \(x_+^\lambda \circ x_-^{\lambda-r} \ln x_- \) exists and

\[x_+^\lambda \circ x_-^{\lambda-r} \ln x_- = \frac{(-1)^r \pi \csc (\pi \lambda)}{2 (r-1)!} \left[2c (\rho) + \psi (-\lambda - r + 1) - \Gamma' (1) \right] \delta^{(r-1)} (x) \]

(21)

for \(\lambda \neq 0, \pm 1, \pm 2, \ldots \) and \(r = 1, 2, \ldots \).

Proof. Equation (21) follows on replacing \(x \) by \(-x \) in equation (18).

We finally note that if we replace \(\lambda \) by \(-\lambda - r \) in equation (21), we get

\[x_-^{\lambda-r} \circ x_+^\lambda \ln x_+ = -\frac{\pi \csc (\pi \lambda)}{2 (r-1)!} \left[2c (\rho) + \psi (\lambda + 1) - \Gamma' (1) \right] \delta^{(r-1)} (x) \]

and we see that the product of the distributions \(x_+^\lambda \ln x_+ \) and \(x_-^{\lambda-r} \) is commutative only when \(r = 1 \).

References

Keywords and phrases: distribution, delta-function, neutrix limit, neutrix product.

1991 AMS Subject Classification: 46F10