On Certain Representation of Topological Groups

K.K. MUNINOV
Vuzgorodok-95, Department of Mathematics, Tashkent State University, Tashkent, Uzbekistan
e-mail: root@tsu.silk.org

In this note classes of groups representations of which have either invariant vectors or invariant functionals are introduced. Connection between these classes of groups is established.

Let E be a separable topological vector space over the field of complex numbers \mathbb{C} and $GL(E)$ be the group of all linear automorphisms of E and G be a separable topological group and $\rho : G \to GL(E)$ be a linear representation of the group G in E. We denote by E^G the subspace of $\rho(G)$-invariant elements in E, that is $E^G = \{x \in E : \rho(g)x = x \text{ for all } g \in G\}$, and denote by E' the space of continuous linear functionals on the space E.

A functional $f \in E'$ is called $\rho(G)$-invariant if $f(gx) = f(g^{-1}x)$ for all $g \in G$.

A linear representation ρ of topological group G in E is called continuous if the mapping $G \times E \to E$ defined by the formula $g(x) \to \rho(g)x$ is continuous.

Everywhere we consider continuous representations.

Definition 1. A linear representation ρ is called linear reductive (or α-representation) if for each $x \in E^G$, $x \neq 0$ there exists continuous $\rho(G)$-invariant linear functional $f \in E'$ such that $f(x) \neq 0$. In the case of $E^G = \{0\}$ the representation ρ is also called α-representation.

Definition 2. A linear representation ρ of the group G in E is said to be β-representation if for arbitrary nontrivial continuous $\rho(G)$-invariant functional $f \in E'$ there exists element $x \in E^G$ such that $f(x) \neq 0$.

We recall that a closed subspace E_1 in E is said to be t-complementable if there exists a closed subspace E_2 in E such that $E_1 \cap E_2 = \{0\}$ and E is the topological direct sum of subspaces E_1 and E_2. Here one assumes that there exist continuous projections acting from E onto E_1 and E_2 [2]. In this case subspace E_2 is called t-complementable to E_1 and the notation $E = E_1 \oplus E_2$ is used.
Definition 3. A linear representation ρ of the group G in E is said to be t_γ-representation (or semi-simple), if for every $\rho(G)$-invariant subspace E_1 in E there exists on $\rho(G)$-invariant complementary subspace E_2.

We refer to topological group G as the group of class $t\alpha$ (respectively $t\beta$ and $t\gamma$), if its every continuous linear representation is a $t\alpha$-(resp. $t\beta$- and $t\gamma$-) representation.

We refer to topological group G as the $ft\alpha$ (respectively $ft\beta$ and $ft\gamma$) group, if its every finite dimensional continuous representation is a $t\alpha$-(resp. $t\beta$- and $t\gamma$-) representation.

Proposition. Every t_γ-group is also a $t\alpha$-group.

Proof. Let G be a t_γ-group and $0 \neq x \in E^G$. Since p is a t_γ-representation, then there exists a G-invariant closed subspace E_x complementing the one dimensional invariant subspace Cx, where C denotes the field of complex number. Let us consider the linear functional f in E defined in the following way: $f(y) = 0$, at $y \in E_x$ and $f(x) = 1$. Then f is invariant with respect to G, $f \in E'$ and $f(x) \neq 0$. Consequently, G is a $t\alpha$-group.

Theorem 1. A locally compact group G is a $t\beta$-group if and only if G is compact.

Proof. Since G is a locally compact group, there exists a right-invariant nontrivial Haar measure dg on G. We consider the Banach space $V = L_1(G, dg)$ with the norm $\|\varphi\| = \left[\int_G |\varphi| dg \right]$, $\varphi \in V$. We give a representation G in V by setting

$$(T_{g\varphi})(t) = \varphi(tg), \quad \varphi \in V, \quad g, \ t \in G.$$

Since dg is right-invariant measure, then nontrivial linear functional $f(\varphi) = \int_G \varphi(t)dg$ on V is $\rho(G)$-invariant. Since the group G is a $t\beta$-group, there exists nontrivial $\varphi_0 \in V^G$ such that $f(\varphi_0) \neq 0$. But if G is not a compact group, then $V^G = \{0\}$. Consequently, G is compact.

Let G be a compact group and dg be a measure of Haar on G, normed by the condition $\int_G dg = 1$, and $\rho: \to GL(E)$ be a linear continuous representation in complete locally convex space E and E' be the conjugated space to E.

Let $f \in (E')^G$ be an arbitrary nonzero element. There is $x \in E$ such that $f(x) \neq 0$. We consider operator

$$p = \int_G \rho(g)dg$$

(1)
It is known (see, for example, [1], p.150) that this operator is a projection operator on E^G (expression (1) is considered as an integral of function on G with values in $GL(E)$ (see [1], p.150)). Therefore

$$f(\nu) = \int_G (g(x))dg = \int_G f(g(x))dg = f(x)\int_G dg = f(x) \cdot 1 = f(x) \neq 0,$$

therefore ρ is a $t\beta$-representation. This means that G is a β-group.

Theorem 2. For the group G the following conditions are equivalent:

(a) G is a group of class $t\beta$

(b) G is a group of class $t\gamma$.

Proof. $(a) \Rightarrow (b)$. Let $\rho: G \rightarrow GL(E)$ be an arbitrary continuous linear representation of the topological group G of class $t\beta$ in a space E, and E_0 be a nontrivial t-complementable $\rho(G)$-invariant subspace in E.

We prove that there exists $\rho(G)$-invariant t-complement of E_0. Let $L(E) = \text{Hom}_c(E, E) = \text{End} E$ be the space of all continuous linear mappings of E into E. G operates in $L(E)$ as follows:

$$g f = gf^{-1}, \text{ where } g \in G, f \in L(E).$$

In $L(E)$ we shall consider strong operator topology st: sequence f_α converges to f strongly if for all $x \in E$ the sequence $f_\alpha(x)$ converges to $f(x)$ (and it is denoted by $f_\alpha \xrightarrow{st} f$).

Since E_0 is t-complementable vector space in E, there exists a closed vector subspace E_1 of E such that E is topological direct sum of E_0 and E_1.

Let $p_0(p_1)$ is projective operator on $E_0(E_1)$ parallel to the space E_1 (respectively E_0). Then $1 = p_0 + p_1$ and these operators are continuous [2].

The equality $g p_0 = p_0 g p_0$ is clear. Hence $\tilde{g} p_0 = p_0 \tilde{g} p_0$; indeed $p_0 \tilde{g} p_0 = p_0 g p_0 g^{-1} = g p_0 g^{-1} = \tilde{g} p_0$.

We shall consider the following linear subspaces

$$W_0 = l.s.\{\tilde{g} p_1 : g \in G\}, V_0 = l.s.\{(\tilde{g} - 1)p_1 : g \in G\},$$

where $l.s.$ means linear span.

We have

$$W_0 = V_0 + Cp_1.$$
We show that $V_0 \cap C_{P_1} = \{0\}$. Indeed, $p_1E = E_1$ and at the same time

\[(\tilde{g} - 1)p_1 = \tilde{g}p_1 - p_1 = \tilde{g}(1 - p_0) - p_1 = 1 - \tilde{g}p_0 - p_1 \]

\[= p_0 - \tilde{g}p_0 = p_0^2 - \tilde{g}p_0 = p_0^2 - p_0\tilde{g}p_0 = p_0(1 - \tilde{g})p_0.\]

Hence $T(E) \in E_0$ for arbitrary $T \in V_0$ and therefore $V_0 \cap C_{P_1} = \{0\}$. Thus $W_0 = V_0 + C_{P_1}$. Now we show that $W = V \oplus C_{P_1}$, where $W = W_0$, $V = V_0$ and the closures are taken on topology st. Assume that the sequence $x_\alpha \in W_0$ converges to $x \in W_0 = W$. Then

\[x_\alpha = y_\alpha + c_\alpha p_1 \xrightarrow{\text{st}} x, \quad y_\alpha \in V_0, \ c_\alpha \in C.\]

By applying p_1 to

\[y_\alpha + c_\alpha p_1 \xrightarrow{\text{st}} x\]

we get

\[p_1(y_\alpha + c_\alpha p_1) = p_1y_\alpha + c_\alpha p_1 = 0 + c_\alpha p_1 \xrightarrow{\text{st}} p_1x.\]

Since $c_\alpha p_1 \in C_{P_1}$, then $p_1x \in C_{P_1}$. On the other hand from the convergence $x_\alpha \xrightarrow{\text{st}} x$ we get that

\[p_0 x_\alpha = p_0(y_\alpha + c_\alpha p_1) = p_0y_\alpha + p_0c_\alpha p_1 = y_\alpha + 0 \xrightarrow{\text{st}} p_0x,\]

i.e., $p_0x \in V_0 = V$. Therefore $x = (p_0 + p_1)x = p_0x + p_1x \in V + C_{P_1}$.

Assume that $z \in V_0 = V$, then there exists $y_\alpha \in V_0$, such that $y_\alpha \xrightarrow{\text{st}} z$.

From here we have

\[p_0y_\alpha = y_\alpha \xrightarrow{\text{st}} p_0z \quad \text{and} \quad z = p_0z,\]

i.e., $z(E) \subset E_0$. But $C_{P_1}(E) \subset E_1$. Hence $V \cap C_{P_1} = \{0\}$. Thus $W = V \oplus C_{P_1}$.

Since V is st-closed and dim $C_{P_1} = 1$, there exists $f \in W'$ such that $ker f = V$. Let ω be an arbitrary element of W, i.e., $\omega = \lambda p_1 + \omega_1$, $\lambda \in C$, $\omega_1 \in V$. Then

\[f(\omega) = \lambda f(p_1) + f(\omega_1) = \lambda f(p_1).\]

It can be assumed that $f(p_1) = 1$. Taking it into account, we get that

\[\lambda = f(\omega) \text{ and } \omega_1 = \omega - f(\omega)p_1.\]

Thus $\omega = f(\omega)p_1 + (\omega - f(\omega)p_1)$. From the construction of W it follows that this space is $\rho(G)$-invariant. We consider restriction of the representation of the group G to W and show that f is a $\rho(G)$-invariant functional. Indeed, $f(\lambda p_1 + \nu) = \lambda$, where $\nu \in V$. Therefore
On Certain Representation of Topological Groups

\[f(\tilde{g}(\lambda p_1 + \nu)) = f(\lambda \tilde{g} p_1 + \tilde{g} \nu) = f(\lambda p_1 - \lambda(1 - \tilde{g}) p_1 + \tilde{g} \nu) = f(\lambda p_1 + \lambda(\tilde{g} - 1)p_1 + \tilde{g} \nu) = \lambda, \]

because \(\lambda(\tilde{g} - 1)p_1 + \tilde{g} \nu \in V \). This means that \(f \) is \(\rho(G) \)-invariant.

Since \(G \) is a \(TB \) group, for this functional there exists a \(\rho(G) \)-invariant element \(p_2 = p_1 + Q_0 \in W(Q_0 \in V) \) such that \(f(p_2) = 1 \neq 0 \). We define \(L = \overline{p_2(E_1)} \) (closure in topology \(st \)).

Since \(p_2 \) is \(\rho(G) \)-invariant, \(L \) is also \(\rho(G) \)-invariant: Indeed \(\tilde{g} p_2 = g p_2 g^{-1} = p_2 \), i.e., \(gp_2 = p_2 g \). Taking it into account we get that

\[g(p_2(E)) = g p_2 g^{-1}(g(E)) = p_2(g(E)) \subset p_2 E. \]

By using the continuity of \(g \) and taking the limit we get that \(\rho(L) \subset L \), i.e., \(L \) is \(\rho(G) \)-invariant.

We note that \(T(E_0) = 0 \) for any \(T \in V_0 \) and therefore \(T(E_0) = 0 \) for all \(T \in V \).

From here \(Q_0(E_0) = 0 \) and \(p_1(E_0) = 0 \). Then

\[p_2(E_0) = (p_1 + Q_0) E_0 = p_1 E_0 + Q_0 E_0 = 0 \]

Thus

\[p_2 E = p_2(E_0 + E_1) = p_2 E_0 + p_2 E_1 = p_2 E_1. \]

From here we get that \(L = \overline{p_2(E_1)} \). For every \(x \in E \) we have

\[x = p_0 x + p_1 x = p_0 x + (p_2 - Q_0) x = (p_0 - Q_0) x + p_2 x. \]

Taking into account \((p_0 - Q_0) x \in E_0 \) and \(p_2 x \in L \), we get that \(E = E_0 + L \). If \(z \in E_0 \cap p_2 E_1 \), then \(z = p_2 y (y \in E_1) \) and \(z \in E_0 \), in particular \(p_1 z = 0 \). Then

\[0 = p_1 (p_2 y) = p_1(p_1 + Q_0) y = (p_1^2 + p_1 Q_0) y = (p_1 + p_1 Q_0) y = p_1 y + p_1 Q_0 y = p_1 y = y. \]

From here we get \(y = 0 \) and \(z = 0 \). Hence \(E_0 \cap p_2 E_1 = \{0\} \).

Now we assume that \(z \in E_0 \cap L \), then there exists \(z_n \in p_2 E = p_2 E_1 \) such that \(z_n \overset{\text{st}}{\to} z \). Since \(z \in E_0 \), then \(p_0 z = z \), \(p_1 z = 0 \). Hence \(p_1 z_n \overset{\text{st}}{\to} p_1 z = 0 \). Next \(z_n = p_2 y_n \), where \(y_n \in E_1 \). Hence \(0 \overset{\text{st}}{\to} p_1 z_n = p_1(p_2 y_n) = p_1 y_n = y_n \), i.e., \(y_n \overset{\text{st}}{\to} 0 \).
From here we get \(z \mapsto z_n = p_2 y_n = p_1 y_n \mapsto 0 \), and therefore \(z = 0 \).

It means that \(E_0 \cap L = \{0\} \).

Thus \(E = E_0 \oplus L \) i.e., it is topological direct sum of \(\rho(G) \)-invariant subspaces \(E_0 \) and \(L \).

(b) \(\Rightarrow \) (a). We assume that \(0 \neq f \in E' \), \(f \) is \(\rho(G) \)-invariant continuous linear functional, \(V = \ker f \).

Subspace \(V = \ker f \) is obviously \(\rho(G) \)-invariant. Then from the condition (t7) it follows that there exists closed \(\rho(G) \) invariant subspace \(H \subset E \) such that \(E = V \oplus H \).

Since \(\text{codim } V = 1 \), then \(\dim H = 1 \), i.e., \(H = \{ \lambda v \}_{1 \in C}, v \neq 0 \) and \(f(v) \neq 0 \).

Let \(g v = \lambda_1 v \). We have that \(0 \neq f(v) = f(g v) = f(\lambda_1 v) = \lambda_1 f(v) \). Hence \(\lambda_1 = 1 \), and therefore \(g v = v \) for every \(g \in G \). Thus \(G \) is \(t\beta \)-group. Theorem 2 is proved.

Corollary. Every \(t\beta \)-group is a \(t\alpha \)-group.

The proof follows from the Proposition and Theorem 2.

Theorem 3. For the group \(G \) the following conditions are equivalent:

(a) \(G \) is a \(ft\alpha \)-group,
(b) \(G \) is a \(ft\beta \)-group,
(c) \(G \) is a \(ft\gamma \)-group.

Proof. (a) \(\Leftrightarrow \) (c) is analogous to the proof of the proposal 2.2.4 (see [3] p.27). That (b) \(\Leftrightarrow \) (c) can be proved in the same way as in Theorem 2.

References