Notes on periodic solutions for a nonlinear discrete system involving the p-Laplacian

Xingyong Zhang *

Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China

Abstract In this paper, we first improve two inequalities, then by using critical point theory, improve an existence theorem of periodic solutions for a nonlinear discrete system involving the p-Laplacian, and present some estimates of periodic solutions.

Keywords p-Laplacian systems; Periodic solutions; Critical point; Sobolev’s inequality; Wirtinger’s inequality.

2010 Mathematics Subject Classification 39A23, 37J45, 35A15.

1 Introduction and Main results

Let \mathbb{R} denote the real number, \mathbb{Z} the integers. Given $a < b$ in \mathbb{Z}, let $\mathbb{Z}[a, b] = \{a, a + 1, \cdots, b\}$. Let $T > 1$ and N be fixed positive integers.

Consider the following nonlinear discrete system involving the p-Laplacian

$$\Delta[\Phi_p(\Delta x(t - 1))] + \nabla F(t, x(t)) = 0, \quad t \in \mathbb{Z},$$

(1.1)

where $p > 1, q > 1, 1/p + 1/q = 1$, $\Phi_p(u) = |u|^{p-2}u = \left(\sqrt{\sum_{i=1}^{N} u_i^2}\right)^{p-2} (u_1, u_2, \cdots, u_N)^\tau$, $u \in \mathbb{R}^N$, \cdot^τ stands for the transpose of a vector or a matrix, $F : \mathbb{Z} \times \mathbb{R}^N \to \mathbb{R}$, $(t, x) \to F(t, x)$ is T–periodic in t for all $x \in \mathbb{R}^N$ and continuously differentiable and convex in x for every $t \in \mathbb{Z}$, $\nabla F(t, x)$ denotes the gradient of $F(t, x)$ in x, and $\Delta x(t) = x(t + 1) - x(t)$, $\Delta^2 x(t) = \Delta(\Delta x(t))$.

When $p = 2$, problem (1.1) becomes the second order discrete nonlinear system. By using the variational methods, some existence results for periodic solutions are obtained, such as [1], [5], [6], [9], [10] and [11]. When $p > 1$, recently, there are also some results,
see [2], [3], [4] and [7]. Especially, in [7], by using the dual least principle, the authors obtained the following result:

Theorem 1.1. Suppose F satisfies the following conditions:

(A1) there exists $\beta : \mathbb{Z} \to \mathbb{R}^N$ such that for all $(t, y) \in \mathbb{Z} \times \mathbb{R}^N$,

$$F(t, y) \geq \left(\beta(t), |y|^\frac{p-2}{2} y \right) \quad \text{and} \quad \beta(t + T) = \beta(t);$$

(A2) there are constants $\alpha \in (0, T^{-1})$, and $\gamma : \mathbb{Z} \to \mathbb{R}$ such that for all $(t, y) \in \mathbb{Z} \times \mathbb{R}^N$,

$$F(t, y) \leq \alpha |y|^p + \gamma(t) \quad \text{and} \quad \gamma(t + T) = \gamma(t);$$

(A3) $\sum_{t=1}^{T} F(t, y) \to +\infty$, as $|y| \to \infty$, $y \in \mathbb{R}^N$.

Then, system (1.1) has at least one T-periodic solution.

In our paper, we will improve two discrete inequalities in [7] and [12]. Furthermore, we improve the condition (A2) and also obtain some estimates of periodic solution for system (1.1).

2 Preliminaries

In the following, we use $| \cdot |$ to denote the Euclidean norm in \mathbb{R}^N. Let

$$S = \{ u = (u_1, u_2)^\tau = \{ u(t) \} | u(t) = (u_1(t), u_2(t))^\tau \in \mathbb{R}^{2N},$$

$$u_i = \{ u_i(t) \}, u_i(t) \in \mathbb{R}^{N}, i = 1, 2, t \in \mathbb{Z} \}. $$

E is defined as a subspace of S by

$$E = \{ u = \{ u(t) \} \in S | u(t + T) = u(t), t \in \mathbb{Z} \}. $$

For $u = (u_1, u_2)^\tau \in E$, set

$$\| u_i \|_r = \left(\sum_{t=1}^{T} |u_i(t)|^r \right)^{1/r},$$

where $i = 1, 2, r > 1$. Then E can be equipped with the norm as follows:

$$\| u \| = \| u_1 \|_p + \| u_2 \|_q$$

for $u = (u_1, u_2)^\tau \in E$. It is obvious that E is a reflexive Banach space with dimension $2NT$, which can be identified with \mathbb{R}^{2NT}. Let

$$W = \left\{ u = (u_1, u_2)^\tau \in E | u_i(1) = u_i(2) = \cdots = u_i(T) = \frac{1}{T} \sum_{t=1}^{T} u_i(t), i = 1, 2 \right\}. $$
and

\[Y = \left\{ u = (u_1, u_2) \in E \left| \sum_{i=1}^{T} u_i(t) = 0, i = 1, 2 \right. \right\}. \]

Then \(E \) can be decomposed into the direct sum \(E = Y \oplus W. \) So, for any \(u \in E, \) \(u \) can be expressed in the form \(u = \tilde{u} + \bar{u}, \) where \(\tilde{u} = (\tilde{u}_1, \tilde{u}_2)^T \in Y \) and \(\bar{u} = (\bar{u}_1, \bar{u}_2)^T \in W. \)

Obviously, \(u_i = \tilde{u}_i + \bar{u}_i, i = 1, 2. \)

For \(u = (u_1, u_2)^T \in Y, \) let

\[\| \Delta u_i \|_r = \left(\sum_{i=1}^{T} |\Delta u_i(t)|^r \right)^{1/r}, \]

where \(i = 1, 2, r > 1. \) It is easy to verify that

\[\| \Delta u \| = \| \Delta u_1 \|_q + \| \Delta u_2 \|_p \]

is also a norm on \(Y. \) Since \(Y \) is finite-dimensional, the norm \(\| \Delta u \| \) is equivalent to the norm \(\| u \| \) in \(E \) if \(u \in Y. \)

\(\Gamma_0(\mathbb{R}^N) \) denotes the set of all convex lower semi-continuous (l.s.c.) functions \(F : \mathbb{R}^N \to (-\infty, +\infty) \) whose effective domain \(D(F) = \{ u \in \mathbb{R}^N : F(u) < +\infty \} \) is nonempty. Let \(H : \mathbb{Z} \times \mathbb{R}^{2N} \to \mathbb{R}, (t, u) \to H(t, u) \) be a smooth Hamiltonian such that for each \(t \in \mathbb{Z}[1, T], \)

\(H(t, \cdot) \in \Gamma_0(\mathbb{R}^{2N}) \) is strictly convex and \(H(t, u)/|u| \to +\infty, \) if \(|u| \to \infty. \) The Fenchel transform \(H^*(t, \cdot) \) of \(H(t, \cdot) \) is defined by

\[H^*(t, v) = \sup_{u \in \mathbb{R}^N} \{ (v, u) - H(t, u) \} \tag{2.1} \]

or

\[\begin{cases} H^*(t, v) = (v, u) - H(t, u), \\ v = \nabla H(t, u), \quad \text{or} \quad u = \nabla H^*(t, v). \tag{2.2} \end{cases} \]

If for \(u = (u_1, u_2), u_1, u_2 \in \mathbb{R}^N, \) \(H(t, u) \) can be split into parts \(H(t, u) = H_1(t, u_1) + H_2(t, u_2), \) then by (2.2), \(H^*(t, v) = H_1^*(t, v_1) + H_2^*(t, v_2), v = (v_1, v_2), v_1, v_2 \in \mathbb{R}^N. \) We denote by \(J \) the symplectic matrix. Then \(J^2 = -I \) and \((Ju, v) = -(u, Jv) \) for all \(u, v \in \mathbb{R}^{2N}. \) It is clear that \((J\dot{v}, v) = (\dot{v}_2, v_1) - (\dot{v}_1, v_2), \) where \(v = (v_1, v_2)^T \in \mathbb{R}^N \times \mathbb{R}^N, i = 1, 2. \)

Let \(u_1(t) = x(t), u_2(t) = \alpha^{-1} \Phi_p(\Delta u_1(t - 1)), t \in \mathbb{Z}. \) Then problem (1.1) is equivalent to the non-autonomous system

\[\begin{cases} \Delta u_2(t) + \alpha^{-1} \nabla F(t, u_1(t)) = 0, & t \in \mathbb{Z}, \\ -\Delta u_1(t - 1) + \alpha^{q-1} \Phi_q(u_2(t)) = 0, \end{cases} \tag{2.3} \]

that is

\[J\Delta u(t) + \nabla H(t, Lu(t)) = 0, \quad t \in \mathbb{Z}, \tag{2.4} \]
where \(Lu(t) = (u_1(t), u_2(t + 1))^\tau, \) \(L^{-1}u(t) = (u_1(t), u_2(t - 1))^\tau, \) \(u = (u_1, u_2)^\tau, H(t, u) = H_1(t, u_1) + H_2(t, u_2) \) and

\[
H_1(t, u_1) = \frac{1}{\alpha} F(t, u_1), \quad H_2(t, u_2) = \frac{\alpha^{q-1}}{q} |u_2|^q. \tag{2.5}
\]

The dual action is defined on \(E \) by

\[
I(v) = \frac{1}{2} \sum_{t=1}^{T} (L(J \Delta v(t - 1)), v(t)) + \sum_{t=1}^{T} \left[H_1^*(t, \Delta v_1(t)) + H_2^*(t, \Delta v_2(t)) \right],
\]

where \(v = (v_1, v_2)^\tau \in E. \) Since \(I(v) = I(\bar{v} + \bar{v}) = I(\bar{v}) \) for \(v = \bar{v} + \bar{v} \in E, \) in order to find the \(T \)-periodic solution of (1.1), it suffices to find the critical point of \(I \) on subspace \(Y \) of \(E. \) The above knowledge and statement come from [7], [8] and [11].

Lemma 2.1. Let \(u = (u_1, u_2) \in Y. \) Then

\[
\max_{t \in \mathbb{Z}[1,T]} |u_i(t)| \leq \min \left\{ \frac{(T - 1)^{(p+1)/p}}{T}, \left(\frac{(T + 1)^{p+1} - 2}{T^p(p+1)} \right)^{1/p}, \left(\sum_{s=1}^{T} |\Delta u_i(s)|^q \right)^{1/q}, \right. \quad i = 1, 2, \tag{2.6}
\]

\[
\max_{t \in \mathbb{Z}[1,T]} |u_i(t)| \leq \min \left\{ \frac{(T - 1)^{(q+1)/q}}{T}, \left(\frac{(T + 1)^{q+1} - 2}{T^q(q+1)} \right)^{1/q}, \left(\sum_{s=1}^{T} |\Delta u_i(s)|^p \right)^{1/p}, \right. \quad i = 1, 2, \tag{2.7}
\]

and

\[
\sum_{t=1}^{T} |u_i(t)|^q \leq \min \left\{ \frac{(T - 1)^{2q-1}}{T^{q-1}}, \frac{T^{q-1}\Theta(p, q)}{(p+1)^q/p} \right\} \sum_{s=1}^{T} |\Delta u_i(s)|^q, \quad i = 1, 2, \tag{2.8}
\]

\[
\sum_{t=1}^{T} |u_i(t)|^p \leq \min \left\{ \frac{(T - 1)^{2p-1}}{T^{p-1}}, \frac{T^{p-1}\Theta(q, p)}{(q+1)^p/q} \right\} \sum_{s=1}^{T} |\Delta u_i(s)|^p, \quad i = 1, 2. \tag{2.9}
\]

where

\[
\Theta(p, q) = \sum_{t=1}^{T} \left[\left(\frac{t}{T} \right)^{p+1} + \left(1 - \frac{t}{T} + \frac{1}{T} \right)^{p+1} - \frac{2}{T^{p+1}} \right]^{p/q},
\]

\[
\Theta(q, p) = \sum_{t=1}^{T} \left[\left(\frac{t}{T} \right)^{q+1} + \left(1 - \frac{t}{T} + \frac{1}{T} \right)^{q+1} - \frac{2}{T^{q+1}} \right]^{q/p}.
\]

Proof. Fix \(t \in \mathbb{Z}[1,T]. \) For every \(\tau \in \mathbb{Z}[1, t-1], \) we have

\[
u_1(t) = u_1(\tau) + \sum_{s=\tau}^{t-1} \Delta u_1(s) \tag{2.10}
\]

and for every \(\tau \in \mathbb{Z}[t,T], \)

\[
u_1(t) = u_1(\tau) - \sum_{s=t}^{\tau-1} \Delta u_1(s). \tag{2.11}
\]
Summing \((2.10)\) over \(\mathbb{Z}[1, t - 1]\) and \((2.11)\) over \(\mathbb{Z}[t, T]\), we have
\[
(t - 1)u_1(t) = \sum_{\tau=1}^{t-1} u_1(\tau) + \sum_{\tau=1}^{t-1} \sum_{s=\tau}^{t-1} \Delta u_1(s) = \sum_{\tau=1}^{t-1} u_1(\tau) + \sum_{s=1}^{t-1} s \Delta u_1(s) \tag{2.12}
\]
and
\[
(T - t + 1)u_1(t) = \sum_{\tau=t}^{T} u_1(\tau) - \sum_{\tau=t}^{T-1} \sum_{s=t}^{\tau-1} \Delta u_1(s) = \sum_{\tau=t}^{T-1} u_1(\tau) - \sum_{s=t}^{T-1} (T - s) \Delta u_1(s). \tag{2.13}
\]
Set
\[
\phi(s) = \begin{cases}
s, & 1 \leq s \leq t - 1, \\
T - s, & t \leq s \leq T.
\end{cases}
\]
Since \(\sum_{\tau=1}^{T} u_1(\tau) = 0\), combining \((2.12)\) with \((2.13)\) and using the Hölder inequality, we obtain
\[
|T|u_1(t)| = \left| \sum_{s=1}^{t-1} s \Delta u_1(s) - \sum_{s=t}^{T-1} (T - s) \Delta u_1(s) \right|
\leq \sum_{s=1}^{t-1} s |\Delta u_1(s)| + \sum_{s=t}^{T-1} (T - s)|\Delta u_1(s)|
= \sum_{s=1}^{T} \phi(s)|\Delta u_1(s)|
= \sum_{s=1}^{T} \phi(s)|\Delta u_1(s)|
\leq \left(\sum_{s=1}^{T} |\phi(s)|^p \right)^{1/p} \left(\sum_{s=1}^{T} |\Delta u_1(s)|^q \right)^{1/q}
= \left(\sum_{s=1}^{t-1} s^p + \sum_{s=t}^{T-1} (T - s)^p \right)^{1/p} \left(\sum_{s=1}^{T} |\Delta u_1(s)|^q \right)^{1/q}. \tag{2.14}
\]
Since
\[
\sum_{s=1}^{t-1} s^p < \frac{t^{p+1} - 1}{p + 1}, \quad \sum_{s=t}^{T-1} (T - s)^p = \sum_{k=1}^{T-t} k^p < \frac{(T - t + 1)^{p+1} - 1}{p + 1}, \tag{2.15}
\]
and
\[
\sum_{s=1}^{t-1} s^p + \sum_{s=t}^{T-1} (T - s)^p \leq \sum_{s=1}^{T-1} (T - 1)^p = (T - 1)^{p+1}, \tag{2.16}
\]
it follows from \((2.14)\) that \((2.6)\) with \(i = 1\) holds. On the other hand, from \((2.14),(2.15)\)
and (2.16), we have

\[
T^q \sum_{t=1}^{T} |u_1(t)|^q \leq \left(\sum_{s=1}^{T} \left| \Delta u_1(s) \right|^q \right)^{\frac{1}{q}} \sum_{t=1}^{T} \left(\sum_{s=1}^{t-1} s^p + \sum_{s=t}^{T} (T-s)^p \right)^{\frac{q}{p}} T(T-1)^{2q-1}
\]

\[
\leq \left(\sum_{s=1}^{T} \left| \Delta u_1(s) \right|^q \right)^{\frac{1}{q}} \min \left\{ \sum_{t=1}^{T} \left(\frac{t^{p+1} - 1}{p+1} + \frac{(T-t+1)^{p+1} - 1}{p+1} \right) ^{\frac{q}{p}}, T(T-1)^{2q-1} \right\}
\]

\[
= \left(\sum_{s=1}^{T} \left| \Delta u_1(s) \right|^q \right)^{\frac{1}{q}} \cdot \min \left\{ \frac{T^{2q-1}}{(p+1)^{q/p}} \sum_{t=1}^{T} \left[\left(\frac{t}{T} \right)^{p+1} + \left(1 - \frac{t}{T} + \frac{1}{T} \right)^{p+1} - \frac{2}{T^{p+1}} \right] ^{\frac{q}{p}}, T(T-1)^{2q-1} \right\}
\]

\[
= \min \left\{ \frac{T^{2q-1}}{(p+1)^{q/p}}, T(T-1)^{2q-1} \right\} \left(\sum_{s=1}^{T} \left| \Delta u_1(s) \right|^q \right)^{\frac{1}{q}}
\]

It follows that (2.8) with \(i = 1 \) holds. Similarly, we can prove other inequalities also hold. Thus the proof is complete.

Remark 2.1. Since

\[
\min \left\{ \frac{(T-1)^{(p+1)/p}}{T}, \left(\frac{(T+1)^{p+2} - 2}{T^{p+1}} \right)^{1/p} \right\} \leq \frac{(T-1)^{(p+1)/p}}{T} < \frac{T^{(p+1)/p}}{T} = T^{1/p}
\]

and

\[
\min \left\{ \frac{(T-1)^{(q+1)/q}}{T}, \left(\frac{(T+1)^{(q+1)} - 2}{T^{q+1}} \right)^{1/q} \right\} \leq \frac{(T-1)^{(q+1)/q}}{T} < \frac{T^{(q+1)/q}}{T} = T^{1/q},
\]

(2.6) and (2.7) improve (2.9) and (2.10) in [7] which shows that for \(u = (u_1, u_2) \in Y \) and \(t \in \mathbb{Z}[1,T] \),

\[
|u_i(t)| \leq T^{1/p} \| \Delta u_i \|_{L^q}, \quad |u_i(t)| \leq T^{1/q} \| \Delta u_i \|_{L^p}, \quad i = 1, 2,
\]

respectively. Moreover, Lemma 2.1 also improves Lemma 2.2 in [12].

Lemma 2.2. For every \(u = (u_1, u_2)^T \in E \),

\[
\sum_{t=1}^{T} (L(J\Delta u(t-1)), u(t)) \geq -\frac{C}{q} \| \Delta u_1 \|_{L^q}^q - \frac{C}{p} \| \Delta u_2 \|_{L^p}^p
\]

(2.17)

and

\[
\sum_{t=1}^{T} (L^{-1}(J\Delta u(t)), u(t)) \geq -\frac{C}{p} \| \Delta u_1 \|_{L^p}^p - \frac{C}{q} \| \Delta u_2 \|_{L^q}^q,
\]

(2.18)
where
\[C = C(p, q) + C(q, p), \quad C^q(p, q) = \min \left\{ \frac{(T - 1)^{2q-1}}{T^{q-1}}, \frac{T^{q-1} \Theta(p, q)}{(p + 1)^{q/p}} \right\}, \]
and
\[C^p(q, p) = \min \left\{ \frac{(T - 1)^{2p-1}}{T^{p-1}}, \frac{T^{p-1} \Theta(q, p)}{(q + 1)^{p/q}} \right\}. \]

Proof. For \(u = (u_1, u_2) \in E \), we write \(u_i = \tilde{u}_i + \bar{u}_i \), where \(\tilde{u}_i = 1/T \sum_{t=1}^{T} u_i(t), i = 1, 2 \). Since \(\sum_{t=1}^{T} \tilde{u}_i(t) = 0 \) and \(\Delta u_i(t) = \Delta \tilde{u}_i(t), i = 1, 2 \), then by (2.8), (2.9), Hölder’s inequality and Young’s inequality, we have
\[
\sum_{t=1}^{T} (L(J\Delta u(t - 1)), u(t)) = \sum_{t=1}^{T} [(\Delta u_2(t - 1), u_1(t)) - (\Delta u_1(t), u_2(t))]
= \sum_{t=1}^{T} [(\Delta \tilde{u}_2(t - 1), \tilde{u}_1(t)) - (\Delta \tilde{u}_1(t), \tilde{u}_2(t))]
\geq -C(p, q) \| \Delta \tilde{u}_2 \|_p \| \Delta \tilde{u}_1 \|_q - C(q, p) \| \Delta \tilde{u}_2 \|_p \| \Delta \tilde{u}_1 \|_q
= -C \| \Delta u_2 \|_p \| \Delta u_1 \|_q
\geq -\frac{C}{q} \| \Delta u_1 \|_q^q - \frac{C}{p} \| \Delta u_2 \|_p^p.
\]
Similarly to the above process, (2.18) also holds for \(u = (u_1, u_2) \in E \). \qed

Remark 2.2. Note that
\[
C = C(p, q) + C(q, p) \leq \left(\frac{(T - 1)^{2q-1}}{T^{q-1}} \right)^{1/q} + \left(\frac{(T - 1)^{2p-1}}{T^{p-1}} \right)^{1/p} < 2T. \tag{2.19}
\]
So our Lemma 2.2 improves Lemma 2.3 in [7].

Lemma 2.3. ([8], Proposition 1.4) Let \(G \in C^1(\mathbb{R}^N, \mathbb{R}) \) be a convex function. Then, for all \(x, y \in \mathbb{R}^N \), we have
\[
G(x) \geq G(y) + (\nabla G(y), x - y).
\]

3 Main results and proofs

Theorem 3.1. Suppose \(F \) satisfies \((A_1), (A_3)\) and the following conditions:
\((A_2)^f \) there are constants \(\alpha \in (0, 2/C) \), and \(\gamma : \mathbb{Z} \rightarrow \mathbb{R} \) such that for all \((t, y) \in \mathbb{Z} \times \mathbb{R}^N \),
\[
F(t, y) \leq \frac{\alpha}{p} |y|^p + \gamma(t) \quad \text{and} \quad \gamma(t + T) = \gamma(t);
\]
Then, system (2.3) has at least one solution \(u \in E \) such that

\[
v(t) = \begin{pmatrix} v_1(t) \\ v_2(t) \end{pmatrix} = -J \left[u(t) - \frac{1}{T} \sum_{s=1}^{T} u(s) \right] = \begin{pmatrix} -u_2(t) + \frac{1}{T} \sum_{s=1}^{T} u_2(s) \\ u_1(t) - \frac{1}{T} \sum_{s=1}^{T} u_1(s) \end{pmatrix}
\]

minimizes the dual action \(I \), that is to say, system (1.1) has at least one solution \(x = u_1 \).

Proof. The proof is the same as in [7]. We only need to replace Lemma 2.3 in [7] with our Lemma 2.2 in the proof. In order to make the paper self-contained, we present a brief outline of the proof. More details can be seen in [7].

Step 1. We consider the existence of one \(T \)-periodic solution for a perturbed problem. Note that \(\alpha < 2/C \). So there exists \(\varepsilon_0 > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0) \),

\[
\alpha(1 + \varepsilon)^{p-1} < 2/C, \quad \alpha(1 + \varepsilon)^{q-1} < 2/C.
\]

Consider the following perturbed problem:

\[
\begin{align*}
\Delta u_2(t) + \varepsilon \alpha^{p-1} \phi_p(u_1(t)) + \nabla H_1(t, u_1(t)) &= 0, & t \in \mathbb{Z}, \\
-\Delta u_1(t-1) + \varepsilon \alpha^{q-1} \phi_q(u_2(t)) + \nabla H_2(t, u_2(t)) &= 0, \\
u_1(t + T) &= u_1(t), u_2(t + T) &= u_2(t).
\end{align*}
\]

(3.1)

In order to obtain the solution of the perturbed problem, consider the following perturbed dual action functional

\[
I_\varepsilon(v) = \frac{1}{2} \sum_{t=1}^{T} (L(J\Delta v(t - 1)), v(t)) + \sum_{t=1}^{T} H_\varepsilon^*(t, \Delta v(t)),
\]

where

\[
H_\varepsilon(t, \Delta v) = \varepsilon \alpha^{p-1} \frac{|u_1|^p}{p} + H_1(t, u_1) + \varepsilon \alpha^{q-1} \frac{|u_2|^q}{q} + H_2(t, u_2).
\]

By (A1), (A2)', Lemma 2.1 in [7] and Lemma 2.2, one can obtain that

\[
I_\varepsilon(v) \geq -\frac{C}{2q} \| \Delta v_1 \|^q_q - \frac{C}{2p} \| \Delta v_2 \|^p_p + \frac{(1 + \varepsilon)^{-(q-1)} \alpha^{-1}}{q} \| \Delta v_1 \|^q_q
\]

\[
+ \frac{(1 + \varepsilon)^{-(p-1)} \alpha^{-1}}{p} \| \Delta v_2 \|^p_p - \frac{1}{\alpha} \sum_{s=1}^{T} \gamma(t).
\]

(3.2)

Since \((1 + \varepsilon)^{-(q-1)} \alpha^{-1} > C/2 \) and \((1 + \varepsilon)^{-(p-1)} \alpha^{-1} > C/2 \), \(I_\varepsilon \) is bounded from below and coercive in subspace \(Y \). By Lemma 2.2 in [7], we know that \(I_\varepsilon \) is continuously differentiable in \(Y \). Then by Theorem 1.1 in [8], \(I_\varepsilon \) attains its minimum at some point \(v_\varepsilon \in Y \). Then by Lemma 2.2 in [7],

\[
u_\varepsilon(t) = L^{-1}(\nabla H_\varepsilon^*(t, \Delta v_\varepsilon(t))), u_\varepsilon = (u_{1\varepsilon}, u_{2\varepsilon})^T, v_\varepsilon = (v_{1\varepsilon}, v_{2\varepsilon})^T
\]
is a solution of the perturbed problem (3.1).

Step 2. We prove that \(u_\varepsilon \) is bounded in \(E \). By (A3), we can get a \(y_0 \in E \) such that \(\sum_{t=1}^{T} y_0(t) \). Then
\[
I_\varepsilon(v_\varepsilon) \leq I_\varepsilon(y_0) \leq \frac{1}{2} \sum_{t=1}^{T} (L(J\Delta y_0(t - 1)), y_0(t)) + \sum_{t=1}^{T} H^*(t, \Delta y_0(t)) < +\infty.
\]

Note that \(\Delta u_\varepsilon(t) = J\Delta v_\varepsilon(t) \). So (3.2), (2.8) and (2.9) imply that there exists a constant \(K_1 \) such that
\[
\|\tilde{u}_{1\varepsilon}\|_p \leq K_1 \text{ and } \|\tilde{u}_{2\varepsilon}\|_q \leq K_1.
\]

By virtue of the convexity of \(H_i(t, \cdot)(i = 1, 2) \), (3.3), (A2)' and (A3), we can obtain that there exists a constant \(K_2 \) such that
\[
|\bar{u}_{1\varepsilon}| \leq K_2 \text{ and } |\bar{u}_{2\varepsilon}| \leq K_2.
\]

So
\[
\|u_\varepsilon\| = \|u_{1\varepsilon}\|_p + \|u_{2\varepsilon}\|_q \leq \|\tilde{u}_{1\varepsilon}\|_p + |\tilde{u}_{1\varepsilon}|_p + \|\tilde{u}_{2\varepsilon}\|_q + |\tilde{u}_{2\varepsilon}|_q \leq 2K_1 + K_2(T^{1/p} + T^{1/q}),
\]
which shows that \(u_\varepsilon \) is bounded in \(E \).

Step 3. We prove the existence of a \(T \)-periodic solution for system (1.1). Note that \(u_\varepsilon \) is bounded in \(E \) and \(E \) is dimensional. Then there exists a sequence \(\{\varepsilon_n\} \subset (0, \varepsilon_0) \) and some point \(u = (u_1, u_2)^T \in E \) such that
\[
\varepsilon_n \to 0, \quad u_{\varepsilon_n} \to u \text{ as } n \to \infty.
\]

Let \(n \to \infty \) in (3.1). Then it is easy to obtain that \(u_1 \) is a \(T \)-periodic solution of system (1.1). Moreover, since \(\Delta v_{\varepsilon_n}(t) = -J\Delta u_{\varepsilon_n}(t) \), we have \(v_{\varepsilon_n}(t) = -J(u_{\varepsilon_n}(t) - \bar{u}_{\varepsilon_n}) \). Let \(n \to \infty \). Then
\[
v_{\varepsilon_n}(t) \to -J(u(t) - \bar{u}) := v(t).
\]

Step 4. We prove that \(v = (v_1, v_2)^T \in E \) minimizes the dual action \(I \). Since \(\Delta v_{\varepsilon_n}(t) = \nabla H_{\varepsilon_n}(t, Lu_{\varepsilon_n}(t)) \),
\[
\Delta v_{1\varepsilon_n}(t) = \nabla H_{1\varepsilon_n}(t, u_{1\varepsilon_n}(t)), \quad \Delta v_{2\varepsilon_n}(t - 1) = \nabla H_{2\varepsilon_n}(t, u_{2\varepsilon_n}(t)).
\]

Let \(n \to \infty \). Then (3.5) and (2.4) imply that
\[
\Delta v_1(t) = \nabla H_1(t, u_1(t)), \quad \Delta v_2(t - 1) = \nabla H_2(t, u_2(t)).
\]
As $H^*_v(t, v) \leq H^*(t, v)$, we obtain that

$$I_{t_n}(v_{t_n}) \leq I_{t_n}(h) \leq I(h).$$

for all $h \in E$. Let $n \to \infty$. By (3.6) and Lemma 2.1 in [7], we can get $I(v) \leq I(h)$ for all $h \in E$. Thus the proof is complete.

\[\square \]

Remark 3.1. By (2.19), it is easy to obtain that $2/C > 2/(2T) = 1/T$. So Theorem 3.1 improves Theorem 1.1 since the range of α is larger.

Next, we consider the estimate of solutions for system (1.1).

Theorem 3.2. Assume that there exists $\alpha \in (0, C^{-1})$, $\beta, \gamma \in [0, +\infty)$, $\delta \in (0, +\infty)$ such that

$$\delta |y|^{p/2} - \beta \leq F(t, y) \leq \frac{\alpha p}{p} |y|^p + \gamma,$$

(3.7)

for all $t \in \mathbb{Z}$ and $y \in \mathbb{R}^N$. Then each solution $x = u_1$ of system (1.1) satisfies

$$\sum_{t=1}^{T} |x(t)|^{p/2} \leq \frac{(\gamma + \beta) T}{\delta} + \frac{\alpha^q C(q, p) B^{1/p} D^{1/q}}{\delta},$$

(3.8)

$$\|\Delta x\|_p \leq \frac{p T (\gamma + \beta) 1 - C \alpha}{\alpha^q - C \alpha^{q+1}},$$

(3.9)

where

$$B = \frac{p T (\gamma + \beta)}{\alpha^q - C \alpha^{q+1}}, \quad D = \frac{q T (\gamma + \beta)}{\alpha^{1-q/p} - C \alpha}.$$ Proof. By (3.7), for all $u = (u_1, u_2) \in \mathbb{R}^N \times \mathbb{R}^N$, we have

$$\frac{\delta}{\alpha} |u_1|^{p/2} - \frac{\beta}{\alpha} + \frac{\alpha^{q-1}}{q} |u_2|^q \leq H(t, u) = \frac{1}{\alpha} F(t, u_1) + \frac{\alpha^{q-1}}{q} |u_2|^q \leq \frac{1}{\alpha} |u_1|^p + \frac{\gamma}{\alpha} + \frac{\alpha^{q-1}}{q} |u_2|^q.$$ Then, we have

$$(u, v) - H(t, u) \geq (u, v) - \frac{\alpha^{q-1}}{p} |u_1|^p - \frac{\gamma}{\alpha} - \frac{\alpha^{q-1}}{q} |u_2|^q, \quad \forall \ u \in \mathbb{R}^N \times \mathbb{R}^N.$$ Since

$$(u, v) - \frac{\alpha^{q-1}}{p} |u_1|^p - \frac{\gamma}{\alpha} - \frac{\alpha^{q-1}}{q} |u_2|^q = (u_1, v_1) + (u_2, v_2) - \frac{\alpha^{q-1}}{p} |u_1|^p - \frac{\gamma}{\alpha} - \frac{\alpha^{q-1}}{q} |u_2|^q \leq |u_1||v_1| - \frac{\alpha^{q-1}}{p} |u_1|^p - \frac{\gamma}{\alpha} + |u_2||v_2| - \frac{\alpha^{q-1}}{q} |u_2|^q \leq \sup_{u_1 \in \mathbb{R}^N} \left\{ |u_1||v_1| - \frac{\alpha^{q-1}}{p} |u_1|^p - \frac{\gamma}{\alpha} \right\} + \sup_{u_2 \in \mathbb{R}^N} \left\{ |u_2||v_2| - \frac{\alpha^{q-1}}{q} |u_2|^q \right\} = \frac{|v_1|^q}{q \alpha} - \frac{\gamma}{\alpha} + \frac{1}{p \alpha} |v_2|^p, \quad \forall \ u \in \mathbb{R}^N \times \mathbb{R}^N.$$
Hence, by (2.1), we have
\[
H^*(t,v) \geq \frac{|v_1|^q}{q\alpha} - \frac{\gamma}{\alpha} + \frac{1}{p\alpha}|v_2|^p.
\] (3.11)

When \(v = \nabla H(t,u) \), by (2.2) and (3.10), we get
\[
H^*(t,v) = (u,v) - H(t,u) \leq (u,v) + \frac{\beta}{\alpha}.
\] (3.12)

Then
\[
\frac{|v_1|^q}{q\alpha} - \frac{\gamma}{\alpha} + \frac{1}{p\alpha}|v_2|^p \leq (u,v) + \frac{\beta}{\alpha}.
\] (3.13)

Note that \(v = \nabla H(t,u) = \nabla H_1(t,u_1) \nabla H_2(t,u_2) \).

Then by (2.2) and (3.13), we have
\[
\left| \frac{1}{\alpha} \nabla F(t,u_1) \right|^q - \frac{\gamma}{\alpha} + \frac{1}{p\alpha} |\alpha^{-1}\alpha^{-1/2}u_2|^p \leq (u, \nabla H(t,u)) + \frac{\beta}{\alpha},
\]
that is
\[
\frac{\alpha^{-1}(1+q)}{q} |\nabla F(t,u_1)|^q - \frac{\gamma}{\alpha} + \frac{\alpha^{-1}}{p} |u_2|^q \leq (u, \nabla H(t,u)) + \frac{\beta}{\alpha}.
\]

For each solution \(u \in E \) of system (1.1), by (2.3) and (2.4), we know
\[
\nabla F(t,u_1(t)) = -\alpha \Delta u_2(t)
\]
and
\[
L \nabla H(t,u(t)) = \nabla H(t,Lu(t)) = -J\Delta u(t).
\]

Hence
\[
\frac{1}{q\alpha} |\Delta u_2(t)|^q - \frac{\gamma}{\alpha} + \frac{\alpha^{-1}}{p} |u_2(t)|^q \leq (u(t), -L^{-1}(J\Delta u(t))) + \frac{\beta}{\alpha}.
\]

Summing the above inequality over \(\mathbb{Z}[1,T] \) and using Lemma 2.2 and (2.3), we obtain
\[
\frac{1}{q\alpha} \| \Delta u_2 \|^q_{q} - \frac{\gamma T}{\alpha} + \frac{\alpha^{-1}}{p} \| u_2 \|^p_p \leq -\sum_{t=1}^{T} (u(t), L^{-1}(J\Delta u(t))) + \frac{\beta T}{\alpha}
\]
\[
\leq \frac{C}{q} \| \Delta u_2 \|^q_{q} + \frac{C}{p} \| \Delta u_1 \|^p_p + \frac{\beta T}{\alpha}
\]
\[
= \frac{C}{q} \| \Delta u_2 \|^q_{q} + \frac{C\alpha^q}{p} \| \Phi_q(u_2) \|^p_p + \frac{\beta T}{\alpha}
\]
\[
= \frac{C}{q} \| \Delta u_2 \|^q_{q} + \frac{C\alpha^q}{p} \| u_2 \|^q_q + \frac{\beta T}{\alpha}.
\]
So
\[
\left(\frac{1}{q} - \frac{C}{q} \right) \| \Delta u_2 \|_q^q + \left(\frac{\alpha^{q-1} - C\alpha^q}{p} \right) \| u_2 \|_q^q \leq \frac{T(\beta + \gamma)}{\alpha}.
\]
Since \(\alpha \in (0, C^{-1}) \), we have
\[
\| u_2 \|_q^q \leq \frac{pT(\gamma + \beta)}{\alpha^q - C\alpha^{q+1}} = B, \quad \| \Delta u_2 \|_q^q \leq \frac{qT(\gamma + \beta)}{1 - C\alpha} = D.
\] (3.14)
Hence,
\[
\| \Delta u_1 \|_p^p = \alpha^q \| \Phi_q(u_2) \|_p^p = \alpha^q \| u_2 \|_q^q \leq B\alpha^q.
\] (3.15)
It follows that (3.9) holds. Since \(F \) is continuously differentiable and convex in \(x \), then by Lemma 2.3, (3.7), (2.3), Lemma 2.2, Hölder’s inequality, (3.14) and (3.15), we have
\[
\delta \sum_{t=1}^T |u_1(t)|^{p/2} - \beta T \leq \sum_{t=1}^T F(t, u_1(t)) \leq \sum_{t=1}^T \left[F(t, 0) + (\nabla F(t, u_1(t)), u_1(t)) \right] \leq \gamma T - \sum_{t=1}^T (\alpha \Delta u_2(t), u_1(t)) = \gamma T - \sum_{t=1}^T (\alpha \Delta u_2(t), \tilde{u}_1(t)) \leq \gamma T + \alpha \left(\sum_{t=1}^T |\tilde{u}_1(t)|^p \right)^{1/p} \left(\sum_{t=1}^T |\Delta u_2(t)|^q \right)^{1/q} \leq \gamma T + \alpha C(q, p) \||\Delta u_1||_p \| \Delta u_2 \|_q \leq \gamma T + \alpha^q C(q, p) B^{1/p} D^{1/q}.
\]
So, we get
\[
\sum_{t=1}^T |u_1(t)|^{p/2} \leq \frac{(\gamma + \beta)T}{\delta} + \frac{\alpha^q C(q, p) B^{1/p} D^{1/q}}{\delta}.
\]
It follows that (3.8) holds. The proof is complete. \(\square \)

References

