CLOSE-TO-CONVEXITY AND STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

(COMMUNICATED BY INDRAJIT LAHIRI)

RASOUL AGHALARY AND SANTOSH JOSHI

Abstract. The main object of the present paper is to derive some results for multivalent analytic functions defined by a linear operator s. As a special case of these results, we obtain several sufficient conditions for close-to-convexity and starlikeness of certain analytic functions.

1. Introduction

Let $A(p, n)$ denote the class of functions f in the form

$$f(z) = z^p + \sum_{k=n+p}^{\infty} a_k z^k \quad (p, n \in \mathbb{N} = \{1, 2, \ldots\})$$

which are analytic and p-valent in the open unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. We write $A(p, 1) = A(p), A(1, n) = A_n$ and $A_1 = A$. A function $f \in A(p, n)$ is said to be p-valent starlike of order α ($0 \leq \alpha < p$) in Δ if

$$\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad z \in \Delta,$$

and we denote by $S^*_p(\alpha)$ the class of all such functions. A function $f \in A(p, n)$ is said to be p-valent convex of order α ($0 \leq \alpha < p$) in Δ if

$$\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad z \in \Delta,$$

and we denote by $K^*_p(\alpha)$ the class of all such functions. Further a function $f \in A$ is said to be close-to-convex if there exists a (not necessarily normalized) convex function g such that

$$\Re \left(\frac{f'(z)}{g'(z)} \right) > 0, \quad z \in \Delta.$$

We shall denote by C the class of close-to-convex functions in Δ.
For two functions f given by (1) and g given by
\[g(z) = z^p + \sum_{k=n+p}^{\infty} b_k z^k \quad (p, n \in \mathbb{N}), \]
their Hadamard product (or convolution) is defined by
\[(f * g)(z) = z^p + \sum_{k=n+p}^{\infty} b_k a_k z^k. \]

Define the function $\phi_p(a, c; z)$ by
\[\phi_p(a, c; z) := z^p + \sum_{k=n}^{\infty} \frac{(a)_k}{(c)_k} z^{k+p} \quad (c \neq 0, -1, -2, \ldots, z \in \Delta), \]
where $(a)_n$ is the Pochhammer symbol defined by
\[(a)_n := \begin{cases} 1, \quad (n = 0); \\ a(a+1)(a+2)\ldots(a+n-1), \quad (n \in \mathbb{N} := \{1, 2, 3\ldots\}) \end{cases}. \]

Corresponding to the function $\phi_p(a, c; z)$, Saitoh [7] introduced a linear operator $L_p(a, c)$ which is defined by means of the following Hadamard product:
\[L_p(a, c)f(z) = \phi_p(a, c) * f(z) \quad (f \in \mathcal{A}(p, n)), \]
or, equivalently, by
\[L_p(a, c)f(z) = z^p + \sum_{k=n}^{\infty} \frac{(a)_k}{(c)_k} a_k z^{k+p}, \quad z \in \Delta. \]

It follows from (2) that
\[z(L_p(a, c)f(z))' = aL_p(a+1, c)f(z) - (a-p)L_p(a, c)f(z) \quad (3) \]
Note that $L_p(a, a)f(z) = f(z)$, $L_p(p+1, p)f(z) = \frac{zf(z)}{p}$, $L_1(3, 1)f(z) = zf'(z) + \frac{1}{2}z^2f''(z)$ and $L_p(\delta+1, 1)f(z) = D^{\delta+p}f(z)$, where $D^{\delta+p}f$ is the Ruscheweyh derivative of order $\delta + p$.

Many properties of analytic functions defined by the linear operator $L_p(a, c)f(z)$ were studied by (among others), Aghalary and Ebadian [1], Owa and Srivastava [6], Cho et al. [3], and Carlson and Shaffer [2].

In the present paper we aim to find simple sufficient conditions for close-to-convexity and starlikeness of multivalent analytic functions. The following lemma will be required in our present investigations.

Lemma 1.1. (see[4]) Let the (nonconstant) function ω be analytic in Δ with $\omega(z) = \omega_n z^n + \cdots$. If $|\omega|$ attains its maximum value on the circle $|z| = r < 1$ at a point $z_0 \in \Delta$, then
\[z_0 \omega'(z_0) = c \omega(z_0), \]
where c is a real number and $c \geq n$.
2. Main Results

Theorem 2.1. Let \(a \in \mathbb{C}, |a| > 0, \beta \geq 0, \gamma \geq 0, \) and \(0 \leq \alpha < p. \) If the function \(f \in \mathcal{A}(p, n) \) satisfies

\[
\frac{\mathcal{L}_p(a, c)f(z)}{z^p} - 1 > \frac{1}{|a|^\beta} \left(1 - \frac{\alpha}{p}\right)^{\gamma + \beta} n^\beta, \quad z \in \Delta,
\]

then

\[
Re\left(\frac{\mathcal{L}_p(a, c)f(z)}{z^p}\right) > \frac{\alpha}{p}, \quad z \in \Delta.
\]

Proof. Define the function \(\omega \) by

\[
\frac{\mathcal{L}_p(a, c)f(z)}{z^p} = 1 + \left(1 - \frac{2\alpha}{p}\right)\omega(z), \quad (\omega(z) \neq -1, \; z \in \Delta).
\]

Then, clearly, \(\omega(z) = \omega_n z^n + \cdots \) is analytic in \(\Delta. \) By a simple computation and by making use of the familiar identity (3), we find from (6) that

\[
\frac{\mathcal{L}_p(a, c)f(z)}{z^p} - 1 \right| \mathcal{L}_p(a + 1, c)f(z) - \mathcal{L}_p(a, c)f(z) \right|^{\beta} \]

\[
= \frac{1}{|a|^\beta} \left(1 - \frac{\alpha}{p}\right)^{\gamma + \beta} |zw'(z)|^\beta.
\]

Suppose now that there exists a point \(z_0 \in \Delta \) such that

\[
|\omega(z_0)| = 1 \quad \text{and} \quad |\omega(z)| < 1, \quad \text{when} \quad |z| < |z_0|.
\]

Then by using Lemma 1.1, we have \(\omega(z_0) = e^{i\theta}, 0 < \theta \leq 2\pi \) and \(z_0 \omega'(z_0) = \xi \omega(z_0), \xi \geq n. \) Therefore

\[
\frac{\mathcal{L}_p(a, c)f(z_0)}{z_0^p} - 1 \right| \mathcal{L}_p(a + 1, c)f(z_0) - \mathcal{L}_p(a, c)f(z_0) \right|^{\beta} \]

\[
= \frac{1}{|a|^\beta} \left(1 - \frac{\alpha}{p}\right)^{\gamma + \beta} |\xi|^\beta
\]

\[
> \frac{1}{|a|^\beta} \left(1 - \frac{\alpha}{p}\right)^{\gamma + \beta} n^\beta,
\]

which contradicts our hypothesis (4). Thus, we have

\[
|\omega(z)| < 1, \quad z \in \Delta,
\]

and the proof is complete. \(\square \)

By letting \(a = c = 1 \) and \(p = n = 1 \) in Theorem 2.1 we obtain Theorem 3 of [5] that is:

Corollary 2.2. Let \(\gamma \geq 0, \beta \geq 0 \) and \(0 \leq \alpha < 1. \) If the function \(f \in \mathcal{A} \) satisfies

\[
|f'(z) - 1|^{\gamma} |zf''(z)|^{\beta} < 2^{\beta}(1 - \alpha)^{\gamma + \beta}, \quad z \in \Delta,
\]

then

\[
Re f'(z) > \alpha, \quad z \in \Delta,
\]

i.e. \(f \) is close-to-convex function.
Theorem 2.3. Let $a \in \mathbb{C}$ with $\Re a > 0$, let $\beta \geq 0, \gamma > 0$ and $0 \leq \alpha < p$. If $f \in \mathcal{A}(p)$ satisfies the inequality
\[
\left| \frac{\mathcal{L}_p(a,c)f(z)}{z^p} - 1 \right|^\gamma \left| \frac{\mathcal{L}_p(a+1,c)f(z)}{z^p} - 1 \right|^\beta \leq \frac{(1-\frac{\alpha}{p})^{\gamma+\beta}}{|\alpha|^\beta} \left(\Re a + \frac{n}{2} \right)^\beta, \; z \in \Delta, \tag{7}
\]
then
\[
\Re \left(\frac{\mathcal{L}_p(a,c)f(z)}{z^p} \right) > \frac{\alpha}{p}, \; z \in \Delta. \tag{8}
\]

Proof. Let define the function ω by
\[
\frac{\mathcal{L}_p(a,c)f(z)}{z^p} = \frac{1 + \left(1 - \frac{2\alpha}{p} \right) \omega(z)}{1 - \omega(z)}, \quad (\omega(z) \neq -1, \; z \in \Delta).
\]
Then ω is analytic in Δ, $\omega(z) = \omega_n z^n + \cdots$. By making use of the identity (3), we obtain
\[
\left| \frac{\mathcal{L}_p(a,c)f(z)}{z^p} - 1 \right|^\gamma \left| \frac{\mathcal{L}_p(a+1,c)f(z)}{z^p} - 1 \right|^\beta
\]
\[
= \left| \frac{2(1 - \frac{\alpha}{p})\omega(z)}{1 - \omega(z)} \right|^\gamma \left| \frac{2(1 - \frac{\alpha}{p})\omega'(z)}{a(1 - \omega(z))^2} + \frac{2(1 - \frac{\alpha}{p})\omega(z)}{1 - \omega(z)} \right|^\beta
\]
\[
= \frac{2^{\gamma+\beta}(1 - \frac{\alpha}{p})^{\gamma+\alpha}}{|a|^\beta} \left| \frac{\omega(z) - a + \frac{\omega'(z)}{(1 - \omega(z))\omega(z)}}{1 - \omega(z)} \right|^{\gamma+\beta}.
\]
Suppose that there exists a point $z_0 \in \Delta$ such that $\max |\omega(z)| = |\omega(z_0)| = 1 (|z| \leq |z_0|)$. Then by using Lemma 1.1, we have $\omega(z_0) = e^{i\theta}, \; 0 < \theta \leq 2\pi$ and $z_0 \omega'(z_0) = \xi \omega(z_0), \; \xi \geq n$. Therefore
\[
\left| \frac{\mathcal{L}_p(a,c)f(z_0)}{z_0^p} - 1 \right|^\gamma \left| \frac{\mathcal{L}_p(a+1,c)f(z_0)}{z_0^p} - 1 \right|^\beta
\]
\[
= \frac{2^{\gamma+\beta}(1 - \frac{\alpha}{p})^{\gamma+\beta}}{|a|^\beta} \left| \frac{1}{1 - \omega(z_0)} \right|^{\gamma+\beta} \left| a + \frac{\xi}{(1 - e^{i\theta})} \right|^\beta
\]
\[
\geq \frac{(1 - \frac{\alpha}{p})^{\gamma+\beta}}{|a|^\beta} \left(\Re a + \frac{n}{2} \right)^\beta.
\]
Which contradicts obviously our hypothesis (7). Thus, we have $|\omega(z)| < 1$ for all $z \in \Delta$, and hence (8) holds true. \square

By letting $c = a - 1 = 1, \; \gamma = \beta = \frac{1}{2}$ and $p = n = 1$ in Theorem 2.1, we obtain the following Corollary:

Corollary 2.4. If the function $f \in \mathcal{A}$ satisfies the inequality
\[
|f'(z) - 1|^\frac{1}{2} \left| f'(z) + \frac{1}{2} z f''(z) - 1 \right|^\frac{1}{2} \leq \frac{(1 - \alpha)}{\sqrt{2}}(2 + \frac{1}{2})^\frac{1}{2}, \; z \in \Delta,
\]
then
\[
\Re f'(z) > \alpha, \; z \in \Delta,
\]
i.e. f is close-to-convex function.

By letting $c = a = 1, \; \gamma = \beta = \frac{1}{2}$ and $p = 1$ in Theorem 2.3, we conclude the following result:
Corollary 2.5. If the function \(f \in A \) satisfies the inequality
\[
|f(z) - 1|^p |f'(z) - 1|^q < \frac{3}{2} (1 - \alpha), \quad z \in \Delta,
\]
then
\[
\text{Re} \left(\frac{f(z)}{z} \right) > \alpha, \quad z \in \Delta.
\]

Finally we prove:

Theorem 2.6. Suppose that \(a \in \mathbb{C}, \text{Re} \, a \geq 0, \beta \geq 0, \gamma \geq 0 \) and \(0 \leq \alpha < p \). If the function \(f \in \mathcal{A}(p, n) \) satisfies the inequality
\[
\left| \frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)} - 1 \right|^{\gamma} \left| \frac{L_p(a + 2, c) f(z)}{L_p(a + 1, c) f(z)} - 1 \right|^{\beta} < N(\alpha, p, \gamma, \beta), \quad z \in \Delta,
\]
where
\[
N(\alpha, p, \gamma, \beta) = \left\{ \begin{array}{ll}
(1 - \frac{\beta}{\gamma})^\gamma (\text{Re} a)(1 - \frac{\beta}{\gamma} + \frac{2}{\gamma})^\beta, & 0 \leq \alpha \leq \frac{p}{2}, \\
(1 - \frac{\beta}{\gamma})^{\gamma + \beta} (\text{Re} a + \frac{\beta}{\gamma})^\beta, & \frac{p}{2} \leq \alpha < p.
\end{array} \right.
\]
Then
\[
\text{Re} \left(\frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)} \right) > \frac{\alpha}{p}, \quad z \in \Delta.
\]
Proof. Define the function \(M \) by
\[
M(z) = \frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)}.
\]

Then by a simple computation and by making use of the identity (3), we have
\[
\left| \frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)} - 1 \right|^{\gamma} \left| \frac{L_p(a + 2, c) f(z)}{L_p(a + 1, c) f(z)} - 1 \right|^{\beta} = \left| M(z) - 1 \right|^{\gamma} \left| \frac{1}{a + 1} \left(\frac{z M'(z)}{M(z)} + a(M(z) - 1) \right) \right|^{\beta}.
\]

Now we distinguish two cases,
Case(i). If \(0 \leq \alpha \leq \frac{p}{2} \), define a function \(\omega \)
\[
M(z) = \frac{1 + \left(1 - \frac{2\alpha}{p} \right) \omega(z)}{1 - \omega(z)}, \quad z \in \Delta.
\]

Then \(\omega \) is analytic in \(\Delta, \omega(z) = \omega_n z^n + \cdots \) and \(\omega(z) \neq 1 \) in \(\Delta \). We find from (11) that
\[
\left| \frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)} - 1 \right|^{\gamma} \left| \frac{L_p(a + 2, c) f(z)}{L_p(a + 1, c) f(z)} - 1 \right|^{\beta} = \frac{2^{\gamma + \beta} \left(1 - \frac{\beta}{\gamma} \right)^{\gamma + \beta}}{|a + 1|^{\beta}} \left| \frac{\omega(z)}{1 - \omega(z)} \right|^{\gamma + \beta} \left| a + \frac{z \omega'(z)}{1 + \left(1 - \frac{2\alpha}{p} \right) \omega(z)} \right|^\beta.
\]
Suppose now that there exists a point \(z_0 \in \Delta \) such that \(\max |\omega(z)| = |\omega(z_0)| = 1 \) (\(|z| \leq |z_0|\)). Then by using Lemma 1.1, we have \(\omega(z_0) = e^{i\theta} \), \(0 < \theta < 2\pi \) and \(z_0\omega'(z_0) = m\omega(z_0), \ m \geq 1 \). Therefore from (12), we obtain

\[
\left| \frac{L_p(a + 1, c) f(z_0)}{L_p(a, c) f(z_0)} - 1 \right|^\gamma \left| \frac{L_p(a + 2, c) f(z_0)}{L_p(a + 1, c) f(z_0)} - 1 \right|^\beta
\geq \left(\frac{1 - \frac{\alpha}{p}}{|a + 1|} \right)^{\gamma + \beta} \left(\frac{\omega(z_0)}{\omega(z)} \right)^\gamma \left| a + \frac{z \omega'(z)}{\omega(z)} \right|^\beta.
\]

which contradicts (10) for \(0 \leq \alpha < \frac{p}{2} \). Hence, we must have \(|\omega(z)| < 1\) for all \(z \in \Delta \), and the first part of theorem complete.

Case (ii). When \(\frac{p}{2} \leq \alpha < p \), let a function \(\omega \) be defined by

\[
M(z) = \frac{\alpha}{p} \omega(z) - \left(1 - \frac{\alpha}{p} \right)\omega(z), \ z \in \Delta.
\]

Then \(\omega \) is analytic in \(\Delta \) and \(\omega(z) = \omega_n z^n + \cdots \) proceeding the same as case (i). We find from (12) that

\[
\left| \frac{L_p(a + 1, c) f(z)}{L_p(a, c) f(z)} - 1 \right|^\gamma \left| \frac{L_p(a + 2, c) f(z)}{L_p(a + 1, c) f(z)} - 1 \right|^\beta
= \left(\frac{1 - \frac{\alpha}{p}}{|a + 1|} \right)^{\gamma + \beta} \left(\frac{\omega(z_0)}{\omega(z)} \right)^\gamma \left| a + \frac{z \omega'(z)}{\omega(z)} \right|^\beta.
\]

Suppose that there exists a point \(z_0 \in \Delta \) such that \(\max |\omega(z)| = |\omega(z_0)| = 1 \) (\(|z| \leq |z_0|\)). Then by using Lemma 1.1, we have obtain \(\omega(z_0) = e^{i\theta} \), \(0 \leq \theta < 2\pi \) and \(z_0\omega'(z_0) = m\omega(z_0), \ m \geq 1 \). Now from (13) we have

\[
\left| \frac{L_p(a + 1, c) f(z_0)}{L_p(a, c) f(z_0)} - 1 \right|^\gamma \left| \frac{L_p(a + 2, c) f(z_0)}{L_p(a + 1, c) f(z_0)} - 1 \right|^\beta
= \left(\frac{1 - \frac{\alpha}{p}}{|a + 1|} \right)^{\gamma + \beta} \left(\frac{\omega(z_0)}{\omega(z)} \right)^\gamma \left| a + \frac{z \omega'(z_0)}{\omega(z)} \right|^\beta
\geq \left(\frac{1 - \frac{\alpha}{p}}{|a + 1|} \right)^{\gamma + \beta} \left(\frac{\omega(z_0)}{\omega(z)} \right)^\gamma \left| a + \frac{z \omega'(z_0)}{\omega(z)} \right|^\beta.
\]

which contradicts (9) for \(\frac{p}{2} \leq \alpha < p \). Therefore, we must have \(|\omega(z)| < 1\) for all \(z \in \Delta \), and the proof is complete.

By letting \(c = a = 1 \) and \(p = 1 \) in the theorem 2.6, we have:

Corollary 2.7. If the function \(f \in A_n \) satisfies the inequality

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right|^\gamma \left| \frac{zf''(z)}{f'(z)} \right|^\beta \leq M(\alpha, \beta, \gamma, n), \ z \in \Delta,
\]

Then \(\omega(z) = e^{i\theta} \), \(0 < \theta < 2\pi \) and \(z_0\omega'(z_0) = m\omega(z_0), \ m \geq 1 \).
where

\[M(\alpha, \beta, \gamma, n) = \begin{cases}
(1 - \alpha)^\gamma (1 + \frac{\alpha}{2} - \alpha)^\beta, & 0 \leq \alpha \leq \frac{1}{2}, \\
(1 - \alpha)^\gamma + \beta (1 + n)^\beta, & \frac{1}{2} \leq \alpha < 1.
\end{cases} \]

Then

\[\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad z \in \Delta. \]

Acknowledgement. The authors would like to express their gratitude to the referee for many valuable comments that improved the paper.

References

Rasoul Aghalary
Department of Mathematics, Faculty of Science, Urmia University
Urmia, Iran.

E-mail address: raghalary@yahoo.com

Santosh Joshi
Department of Mathematics, Walterhard college of Engineering
Sangli, India.

E-mail address: joshisb@hotmail.com