FIXED POINT THEOREMS FOR SET-VALUED GENERALIZED
ASYMPTOTIC CONTRACTIONS

(COMMUNICATED BY HELGE GLOECKNER)

S. N. MISHRA, RAJENDRA PANT AND S. STOFILE

Abstract. The purpose of this paper is to obtain some coincidence and fixed
point theorems for a generalized hybrid pair of single-valued and set-valued
non continuous maps. Our results generalize some recent results.

1. Introduction

Kirk [14] introduced a new class of maps known as asymptotic contractions on a
metric space and obtained a fixed point theorem (see Definition 1.1 and Theorem
1.2) below.

Definition 1.1. Let \((X, d)\) be a metric space. A self-map \(T\) of \(X\) is an asymptotic
contraction on \(X\) if

\[
d(T^n x, T^n y) \leq \varphi_n(d(x, y)) \quad \text{for} \quad x, y \in X,
\]

where \(\varphi\) is a continuous function, from \([0, \infty)\) into itself, \(\varphi(t) < t\) for all \(t > 0\)
and \(\{\varphi_n\}\) is a sequence of functions from \([0, \infty)\) into itself such that \(\{\varphi_n\} \to \{\varphi\}\)
uniformly on the range of \(d\).

Theorem 1.2. Let \((X, d)\) be a complete metric space and \(T\) an asymptotic contrac-
tion on \(X\) with \(\{\varphi_n\}\) and \(\varphi\) as in Definition 1.1. Assume that there exists \(x \in X\)
such that the orbit \(\{T^n x : n \in \mathbb{N}\}\) of \(x\) is bounded, and that \(\varphi_n\) is continuous for
\(n \in \mathbb{N}\). Then there exists a unique fixed point \(z \in X\). Moreover \(\lim_{n \to \infty} T^n x = z\) for all
\(x \in X\).

Remark 1.3. We remark that:

(1) Theorem 1.2 is an asymptotic version of Boyd and Wong contraction [4]
(see [12]).
(2) Jachymski and Jóźwiec [12] showed that the continuity of the map \(T\) is
essential for the conclusion of Theorem 1.2 to hold.
(3) In respect of Definition 1.1 it has been observed (cf. [1, 12, 21, 22]) that
\(\varphi(0) = 0\).

\[\text{2000 Mathematics Subject Classification: 54H25.}\]

Keywords and phrases. Coincidence point; fixed point; asymptotic contraction.

© 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

(4) For the equivalent formulation of Theorem 1.2 in topological spaces with the so called TCS-convergence, we refer to Tasković [24, 25].

Subsequently many extensions and generalizations of Theorem 1.2 appeared (see, for instance, [1–5, 13, 16, 18–23, 26, 27]). Underlying the power and importance of this new class of maps, Briseid [5, 7] has observed that a continuous self-map of a compact metric space satisfying any one of the first 50 contractive conditions listed by Rhoades [17] is an asymptotic contraction.

Recently, Fakhar [10] and Wlodarczyk et al. [26, 27] extended Kirk’s asymptotic contraction to set-valued maps and obtained some endpoint theorems for such contractions. In [26, 27] some applications of the theory of asymptotic contractions to the analysis of set-valued dynamical systems are also discussed. On the other hand, a generalization of the well known Banach contraction principle due to Meir-Keeler [15] has been of continuing interest in fixed point theory. Recently Suzuki [21] combined the ideas of Meir-Keeler contraction and Kirk’s asymptotic contraction and introduced the following notion of asymptotic contraction of Meir-Keeler type.

Definition 1.4. Let (X, d) be a metric space. A self-map T of X is called an asymptotic contraction of Meir-Keeler type if there exists a sequence φ_n of functions from $[0, \infty)$ into itself satisfying the following conditions:

\begin{align*}
(S1): & \quad \lim \sup \varphi_n(\varepsilon) \leq \varepsilon \text{ for all } \varepsilon \geq 0; \\
(S2): & \quad \text{for each } \varepsilon > 0, \text{ there exists } \delta > 0 \text{ and } \nu \in \mathbb{N} \text{ such that } \varphi_\nu(t) \leq \varepsilon \text{ for all } t \in [\varepsilon, \varepsilon + \delta]; \\
(S3): & \quad d(T^n x, T^n y) < \varphi_n(d(x, y)), \text{ for all } n \in \mathbb{N} \text{ and } x, y \in X \text{ with } x \neq y.
\end{align*}

In this paper first we introduce the notion of set-valued generalized asymptotic contraction of Meir-Keeler type, which includes the known notions of asymptotic contractions due to Kirk [14], Suzuki [21] and Fakhar [10] (see Example 2.7 for illustration). Subsequently, this notion is utilized to obtain some coincidence and fixed point theorems for such contractions which generalize, and unify several known results including [10], [26] and others.

2. Generalized asymptotic contractions

Throughout this section, Y denotes an arbitrary nonempty set, (X, d) a metric space, $CB(X)$ the collection of all nonempty closed bounded subsets of X, φ_n as in Definition 1.4 and H the Hausdorff metric induced by d, i.e.,

$$H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \ \sup_{y \in B} d(y, A) \right\},$$

for all $A, B \subseteq CB(X)$, where $d(x, B) = \inf_{y \in B} d(x, y)$.

We denote by $\delta(A) = \sup\{d(x, y) : x, y \in A\}$.

Further, let

$$m(x, y) : = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2}[d(x, Ty) + d(y, Tx)] \right\};$$

$$M(x, y) : = \max \left\{ d(fx, fy), d(fx, Tx), d(fy, Ty), \frac{1}{2}[d(fx, Ty) + d(fy, Tx)] \right\}.$$

Now, we introduce the notion of set-valued generalized asymptotic contraction of Meir-Keeler type as follows.
Definition 2.1. Let \((X,d)\) be a metric space \(f : Y \to X\) and \(T : Y \to CB(X)\). The map \(T\) will be called a \textit{generalized asymptotic contraction of Meir-Keeler type} with respect to \(f\) if the following hold:

1. \((G1): \limsup_n \varphi_n(\varepsilon) \leq \varepsilon\) for all \(\varepsilon \geq 0\);
2. \((G2):\) for each \(\varepsilon > 0\) there exists \(\delta > 0\) such that \(\varphi_k(t) < \varepsilon\) for all \(t \in [\varepsilon, \varepsilon + \delta]\) and \(k \in \mathbb{N}\);
3. \((G3): H(T^n x, T^n y) < \varphi_n(M(x, y))\) for all \(n \in \mathbb{N}\) and \(x, y \in Y\) with \(M(x, y) > 0\).

As a special case of the above definition, we have the following:

Definition 2.2. Let \((X,d)\) be a metric space and \(T : X \to CB(X)\). The map \(T\) will be called a \textit{generalized asymptotic contraction of Meir-Keeler type} if the following hold:

- \(\limsup_n \varphi_n(\varepsilon) \leq \varepsilon\) for all \(\varepsilon \geq 0\);
- for each \(\varepsilon > 0\) there exists \(\delta > 0\) such that \(\varphi_k(t) < \varepsilon\) for all \(t \in [\varepsilon, \varepsilon + \delta]\) and \(k \in \mathbb{N}\);
- \(H(T^n x, T^n y) < \varphi_n(m(x, y))\) for all \(n \in \mathbb{N}\) and \(x, y \in X\) with \(m(x, y) > 0\).

The following theorem is our main result.

Theorem 2.3. Let \((X,d)\) be a metric space, \(f : Y \to X\) and \(T : Y \to CB(X)\) such that \(TY \subseteq fY\). Let \(T\) be a generalized asymptotic contraction of Meir-Keeler type with respect to \(f\).

If \(T(Y)\) or \(f(Y)\) is a complete subspace of \(X\) then \(T\) and \(f\) have a coincidence point.

Further, if \(Y = X\), then \(T\) and \(f\) have a common fixed point provided that \(ffu = fu\) and \(T\) and \(f\) commute at a coincidence point.

Proof. Pick \(x_0 \in Y\). We construct a sequence \(\{x_n\}\) in the following manner. Since \(TY \subseteq fY\), we may choose a point \(x_1 \in Y\) such that \(fx_1 \in Tx_0\). If \(Tx_0 = Tx_1\) then \(x_1 = z\) is a coincidence point of \(T\) and \(f\) and we are done. So assume that \(Tx_0 \neq Tx_1\) and choose \(x_2 \in Y\) such that \(fx_2 \in Tx_1\) and

\[
d(fx_1, fx_2) \leq H(Tx_0, Tx_1).
\]

If \(Tx_1 = Tx_2\), i.e., \(x_2\) is a coincidence point of \(T\) and \(f\), we are done. If not continuing in the same manner we have

\[d(fx_{n+1}, fx_{n+2}) \leq H(Tx_n, Tx_{n+1}).\]

By \((G3)\),

\[d(fx_n, fx_{n+1}) \leq H(Tx_{n-1}, Tx_n) < \varphi_n(M(x_0, x_1)).\]

First we show that

\[
\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0. \tag{1}
\]

It initially holds if \(x_1 = x_2\). In the other case of \(x_1 \neq x_2\), we assume that

\[\alpha := \limsup_n d(fx_{n+1}, fx_{n+2}) > 0.\]

From the condition \((G2)\), we can choose \(k \in \mathbb{N}\) satisfying \(\varphi_k(d(fx_1, fx_2)) < d(fx_1, fx_2)\). By \((G3)\) and \((G1)\),

\[d(fx_{k+1}, fx_{k+2}) \leq H(Tx_k, Tx_{k+1}) < \varphi_k(M(x_0, x_1)) < M(x_1, x_2). \tag{2}\]
Now, we have
\[
\alpha : = \lim_{n \to \infty} \sup d(f_{x_{k+n+1}}, f_{x_{k+n+2}}) \leq \lim_{n \to \infty} \sup H(T_{x_{k+n}}, T_{x_{k+n+1}})
\]
\[
\leq \lim_{n \to \infty} \sup \varphi_n(M(x_k, x_{k+1})) \leq M(x_k, x_{k+1})
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_k}, T_{x_k}), d(f_{x_{k+1}}, T_{x_{k+1}}),
\frac{1}{2}[d(f_{x_k}, T_{x_{k+1}}) + d(f_{x_{k+1}}, T_{x_k})]
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_k}, f_{x_{k+2}}), d(f_{x_{k+1}}, f_{x_{k+2}}),
\frac{1}{2}[d(f_{x_k}, f_{x_{k+1}}) + d(f_{x_{k+1}}, f_{x_{k+2}})]\}
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_{k+1}}, f_{x_{k+2}})\}.
\]

If
\[
\max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_{k+1}}, f_{x_{k+2}})\} = d(f_{x_k}, f_{x_{k+2}})
\]
then
\[
d(f_{x_{k+1}}, f_{x_{k+2}}) \leq H(T_{x_k}, T_{x_{k+1}})
\]
\[
< \varphi_1(M(x_k, x_{k+1})) < M(x_k, x_{k+1})
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_k}, T_{x_k}), d(f_{x_{k+1}}, T_{x_{k+1}}),
\frac{1}{2}[d(f_{x_k}, T_{x_{k+1}}) + d(f_{x_{k+1}}, T_{x_k})]\}
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_k}, f_{x_{k+2}}), d(f_{x_{k+1}}, f_{x_{k+2}}),
\frac{1}{2}[d(f_{x_k}, f_{x_{k+1}}) + d(f_{x_{k+1}}, f_{x_{k+2}})]\}
\]
\[
= \max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_{k+1}}, f_{x_{k+2}})\} = d(f_{x_k}, f_{x_{k+1}}),
\]

a contradiction. Therefore
\[
\max\{d(f_{x_k}, f_{x_{k+1}}), d(f_{x_{k+1}}, f_{x_{k+2}})\} = d(f_{x_k}, f_{x_{k+1}})
\]
and we conclude that \(M(x_k, x_{k+1}) = d(f_{x_k}, f_{x_{k+1}}) \).

By (2),
\[
d(f_{x_{k+2}}, f_{x_{k+3}}) \leq H(T_{x_{k+1}}, T_{x_{k+2}})
\]
\[
< \varphi_k(M(x_1, x_2)) < M(x_1, x_2)
\]
\[
= \max\{d(f_{x_1}, f_{x_2}), d(f_{x_1}, T_{x_2}), d(f_{x_1}, T_{x_2}),
\frac{1}{2}[d(f_{x_1}, T_{x_2}) + d(f_{x_1}, T_{x_2})]\}
\]
\[
= d(f_{x_1}, f_{x_2}).
\]

So \(\alpha < d(f_{x_1}, f_{x_2}) \). By a similar argument, we obtain \(\alpha < d(f_{x_{k+1}}, f_{x_{k+2}}) \) for all \(k \in \mathbb{N} \). Hence \(\{d(f_{x_n}, f_{x_{n+1}})\} \) converges to \(\alpha \).

Since \(0 < \alpha < d(f_{x_1}, f_{x_2}) < \infty \), there exists \(\delta_2 > 0 \) and \(l \in \mathbb{N} \) such that
\[
\varphi(t) \leq \alpha \text{ for all } t \in [\alpha, \alpha + \delta_2].
\]
We choose $p \in \mathbb{N}$ with $d(f_{x_{p+1}}, f_{x_{p+2}}) < \alpha + \delta_2$. Then we have
\[d(f_{x_{t+p+1}}, f_{x_{t+p+2}}) \leq H(T f_{x_{t+p}}, T f_{x_{t+p+1}}) < \varphi d(f_{x_t}, f_{x_{t+1}}) \leq \alpha, \]
a contradiction. This proves that $\lim d(f_{x_n}, f_{x_{n+1}}) = 0$. Now following the proof of Theorem 3.1 [20], it can be easily shown that $\{f x_n\}$ is a Cauchy sequence.

Suppose $f(Y)$ is complete. Then $\{fx_n\}$ being contained in $f(Y)$ has a limit in $f(Y)$. Call it z. Let $u \in f^{-1} z$. Then $fu = z$. Using (G2),
\[d(fu, Tu) \leq H(Tx_n, Tu) < \varphi_1(M(u, x_n)) = \varphi_1(\max\{d(fu, fx_n), d(fu, Tu), d(fu, Tx_n), \frac{1}{2}d(fu, Tx_n) + d(fx_n, Tu)\}). \]
Making $n \to \infty$, $d(fu, Tu) \leq \varphi_1(d(fu, Tu)) < d(fu, Tu)$. This yields $fu \in Tu$.

Further, if $Y = X$, $ffu = fu$, and the maps f and T commute at their coincidence point u then $fu \in fTu \subseteq Tfu$ and fu is a common fixed point of f and T.

In case TY is a complete subspace of X, the condition $TY \subseteq fY$ implies that the sequence $\{fx_n\}$ converges in fY and the previous argument works. □

Remark 2.4. We remark that a set-valued asymptotic contraction of Meir-Keeler type is the set-valued generalized contraction of Meir-Keeler type when $m(z, y) = d(x, y)$. Further it includes the set-valued asymptotic contraction given in [10] and [20].

Now in the view of Definition 2.3 and the above remark we have the following corollaries.

Corollary 2.5. Let (X, d) be a complete metric space and $T : X \to CB(X)$ a generalized asymptotic contraction of Meir-Keeler type. Then T has a fixed point in X.

Corollary 2.6. Let (X, d) be a complete metric space and $T : X \to CB(X)$ an asymptotic contraction of Meir-Keeler type. Then T has a fixed point in X.

The following example shows the generality of Theorem 2.3 over [26, Th. 2.1] and [10, Th. 2.3].

Example 2.7. Let $Y = (-\infty, \infty)$ and $X = [0, \infty)$ endowed with the usual metric d. Let $f : Y \to X$ and $T : Y \to CB(X)$ be defined by
\[fx = \begin{cases} -2x & \text{if } x < 0, \\ 2x & \text{if } x \geq 0 \end{cases} \quad \text{and} \quad Tx = \begin{cases} \{-x\} & \text{if } x < 0, \\ [0, x] & \text{if } 0 \leq x \leq 1, \\ \{x\} & \text{if } x > 1 \end{cases} \]
for all $x \in Y$. Let $\varphi_n(t) = \frac{3}{4}t$ for $t > 0$.

Then for $x > 1$ and $y > 1$,
\[H(T^n x, T^n y) = |x - y| > \frac{3}{4} |x - y| = \varphi_n(d(x, y)), \]
and the contractive condition of Theorem 2.3 [10] is not satisfied.

Further, $\delta(T^n([0, 1])) = \delta([0, 1])$ and condition (d) of Theorem 2.1 [26] is not satisfied. It can be verified that the maps f and T satisfy all the hypotheses of Theorem
Notice that $TY \subseteq fY$ and f and T commute at 0. Hence $f0 \in T0$ is a common fixed point of f and T.

REFERENCES

S. N. MISHRA and S. STOFILE
Department of Mathematics, Walter Sisulu University
Nelson Mandela Drive, Mthatha 5117
South Africa

E-mail address: smishra@wsu.ac.za
E-mail address: sstofile@wsu.ac.za

RAJENDRA PANT
Department of Mathematics,
Visvesvaraya National Institute of Technology
Nagpur 440010, Maharashtra, India.

E-mail address: pant.rajendra@gmail.com