APPLICATION OF AN INTEGRAL OPERATOR FOR P-VALENT FUNCTIONS

(COMMUNICATED BY SHIGEYOSHI OWA)

MASLINA DARUS, IMRAN FAISAL AND ZAHID SHAREEF

ABSTRACT. By making use of an integral operator defined in an open unit disk, we introduce and study certain new subclasses of p-valent functions. Inclusion relationships are established and integral preserving properties of functions in these subclasses are discussed.

1. Introduction and preliminaries

Let A_p denote the class of functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad p \in \mathbb{N} = \{1, 2, \ldots\}. \quad (1.1)$$

which are analytic in an open unit disk $U = \{z : |z| < 1\}$.

Next we define some well known subclasses of p-valent functions as follows:

$$S_p^\ast(\xi) = \left\{ f \in A_p : \Re\left(\frac{zf'(z)}{f(z)}\right) > \xi, \quad 0 \leq \xi < p, \quad p \in \mathbb{N}, \quad z \in U \right\};$$

$$K_p(\rho, \xi) = \left\{ f \in A_p : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \xi, \quad 0 \leq \xi < p, \quad p \in \mathbb{N}, \quad z \in U \right\};$$

$$K_p(\rho, \xi) = \left\{ f \in A_p : \exists g(z) \in S_p^\ast(\xi) \land \Re\left(\frac{zf'(z)}{g(z)}\right) > \rho, \quad 0 \leq \rho, \quad 0 \leq \xi < p, \quad p \in \mathbb{N}, \quad z \in U \right\};$$

$$K_p^\ast(\rho, \xi) = \left\{ f \in A_p : \exists g(z) \in C_p(\xi) \land \Re\left(\frac{(zf'(z))'}{g'(z)}\right) > \rho, \quad 0 \leq \rho, \quad 0 \leq \xi < p, \quad p \in \mathbb{N}, \quad z \in U \right\};$$

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic Functions; Integral operator; Inclusion properties.

©2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
Submitted May 8, 2011. Published December 1, 2011.
M. Darus, I. Faisal, and Z. Shareef were supported by the grant MOHE: UKM-ST-06- FRGS0244-2010. The authors also would like to thank the referee for the comments and suggestion given to improve the article.

232
The classes $S_p^r(\xi)$, $S_p^a(\xi)$, $C_p(\xi)$, C_p, $K_p(\rho, \xi)$, $K_1(\rho, \xi)$, $K_p(\rho, \xi)$ and $K_1(\rho, \xi)$ were introduced by Patil and Thakare [13], Goodman [14], Owa [15], Aouf [16], Libera [17] and Noor [18, 19] respectively.

Also note that

$$f(z) \in C_p(\xi) \text{ if and only if } \frac{zf'(z)}{p} \in S_p^a(\xi), \; 0 \leq \xi < p, p \in \mathbb{N}, z \in U.$$

Similarly

$$f(z) \in K_p(\xi) \text{ if and only if } \frac{zf'(z)}{p} \in K_p^a(\xi), \; 0 \leq \xi < p, p \in \mathbb{N}, z \in U.$$

For a function $f \in A_p$, we define a differential operator as follow:

$$\mathcal{Y}^0 f(z) = f(z);$$
$$\mathcal{Y}^1_\lambda (p, \alpha, \beta, \mu) f(z) = \left(\frac{\alpha - p\mu + \beta - p\lambda}{\alpha + \beta}\right) f(z) \left(\frac{p\mu + p\lambda}{\alpha + \beta}\right) \frac{zf'(z)}{p};$$
$$\mathcal{Y}^2_\lambda (p, \alpha, \beta, \mu) f(z) = D_{p, \lambda}(\alpha, \beta, \mu) f(z);$$
$$\mathcal{Y}^3_\lambda (p, \alpha, \beta, \mu) f(z) = D(\mathcal{Y}^1_\lambda (p, \alpha, \beta, \mu) f(z));$$
$$\vdots$$
$$\mathcal{Y}^{\lambda \prime}_\lambda (p, \alpha, \beta, \mu) f(z) = D(\mathcal{Y}^{\lambda - 1}_\lambda (p, \alpha, \beta, \mu) f(z)). \tag{1.2}$$

If f is given by (1.1) then from (1.2) we have

$$\mathcal{Y}^{\lambda \prime}_\lambda (p, \alpha, \beta, \mu) f(z) = z^p + \sum_{k=p+1}^{\infty} \left(\frac{\alpha + (\mu + \lambda)(k - p) + \beta}{\alpha + \beta}\right)^n a_k z^k, \tag{1.3}$$

where $f \in A_p$, $\alpha, \beta, \mu, \lambda \geq 0, \alpha + \beta \neq 0, n \in \mathbb{N}_0 = \{0, 1, \ldots\}$.

This generalizes some well known differential operators available in literature (see for examples [1]-[11]).

Now we define the integral operator for $f(z) \in A_p$ as follows:

$$\mathcal{I}_p^0(\alpha, \beta, \mu, \lambda) f(z) = f(z);$$

$$\mathcal{I}_p^1(\alpha, \beta, \mu, \lambda) f(z) = \frac{\alpha + \beta}{\mu + \lambda} z^{p-(\frac{\alpha + \beta}{\mu + \lambda})} \int_0^z t^{(\frac{\alpha + \beta}{\mu + \lambda})-p-1} f(t) \, dt;$$

$$\mathcal{I}_p^2(\alpha, \beta, \mu, \lambda) f(z) = \frac{\alpha + \beta}{\mu + \lambda} z^{p-(\frac{\alpha + \beta}{\mu + \lambda})} \int_0^z t^{(\frac{\alpha + \beta}{\mu + \lambda})-p-1} \mathcal{I}_p^1(\alpha, \beta, \mu, \lambda) f(t) \, dt;$$

$$\vdots$$

$$\mathcal{I}_p^m(\alpha, \beta, \mu, \lambda) f(z) = \frac{\alpha + \beta}{\mu + \lambda} z^{p-(\frac{\alpha + \beta}{\mu + \lambda})} \int_0^z t^{(\frac{\alpha + \beta}{\mu + \lambda})-p-1} \mathcal{I}_p^{m-1}(\alpha, \beta, \mu, \lambda) f(t) \, dt.$$

This implies

$$\mathcal{I}_p^m(\alpha, \beta, \mu, \lambda) f(z) = z^p + \sum_{k=2}^{\infty} \left(\frac{\alpha + \beta}{\alpha + (\mu + \lambda)(k - p) + \beta}\right)^m a_k z^k, \tag{1.4}$$
where $\alpha \geq 0, \beta \geq 0, \mu \geq 0, \lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, f(z) \in A_p, z \in \mathbb{U}$.

From (1.4) we have

$$\left(\mu + \lambda\right)z \left(\mathbb{C}_p^{m+1}(\alpha, \beta, \mu, \lambda)f(z)\right)' =$$

$$(\alpha + \beta)\left(\mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f(z)\right) - \left(\alpha + \beta - p(\mu + \lambda)\right)\left(\mathbb{C}_p^{m+1}(\alpha, \beta, \mu, \lambda)f(z)\right).$$ (1.5)

Using the operator $\mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f(z)$ defined in (1.4), we introduce the following subclasses of p-valent functions:

$$\mathbb{S}_m^*(p, \xi, \lambda, \alpha, \beta, \mu) = \left\{ f \in A_p : \mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f \in S_p^*(\xi) \right\};$$

$$\mathbb{C}_m(p, \xi, \alpha, \beta, \mu) = \left\{ f \in A_p : \mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f \in C_p(\xi) \right\};$$

$$\mathbb{A}_m(p, \xi, \alpha, \beta, \mu) = \left\{ f \in A_p : \mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f \in K_p(p, \xi) \right\};$$

$$\mathbb{A}_m(p, \xi, \alpha, \beta, \mu) = \left\{ f \in A_p : \mathbb{C}_p^m(\alpha, \beta, \mu, \lambda)f \in K_p^*(p, \xi) \right\}.$$

2. Inclusion relationships

In this section, we establish various inclusion relationships for the functions belonging to the new subclasses of p-valent functions.

Lemma 2.1. [20, 21] Let $\varphi(\mu, \nu)$ be a complex function, $\phi : D \to \mathbb{C}, D \subset \mathbb{C} \times \mathbb{C}$, and let $\mu = \mu_1 + i\mu_2, \nu = \nu_1 + i\nu_2$. Suppose that $\varphi(\mu, \nu)$ satisfies the following conditions:

1. $\varphi(\mu, \nu)$ is continuous in D;
2. $(1, 0) \in D$ and $\Re\{\varphi(1, 0)\} > 0$;
3. $\Re\{\varphi(i\mu_2, \nu_1)\} \leq 0$ for all $(i\mu_2, \nu_1) \in D$ such that $\nu_1 \leq -\frac{1}{2}(1 + \mu_2^2)$.

Let $h(z) = 1 + c_1z + c_2z^2 + \cdots$ be analytic in \mathbb{U}, such that $(h(z),zh'(z)) \in D$ for all $z \in \mathbb{U}$. If $\Re\{\varphi(h(z),zh'(z))\} > 0(z \in \mathbb{U})$, then $\Re\{h(z)\} > 0$ for $z \in \mathbb{U}$.

Theorem 2.2. Let $f(z) \in A_p$ and $\alpha, \beta, \mu, \lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathbb{U}$. Then

$$\mathbb{S}_m^*(p, \lambda, \alpha, \beta, \mu) \subseteq \mathbb{S}_{m+1}^*(p, \lambda, \alpha, \beta, \mu) \subseteq \mathbb{S}_{m+2}^*(p, \lambda, \alpha, \beta, \mu).$$

Proof. To prove $\mathbb{S}_m^*(p, \lambda, \alpha, \beta, \mu) \subseteq \mathbb{S}_{m+1}^*(p, \lambda, \alpha, \beta, \mu)$, let $f(z) \in \mathbb{S}_m^*(p, \lambda, \alpha, \beta, \mu)$ and assume that

$$\frac{z(\mathbb{C}_p^{m+1}(\alpha, \beta, \mu, \lambda)f(z))'}{\mathbb{C}_p^{m+1}(\alpha, \beta, \mu, \lambda)f(z)} = \xi + (p - \xi)h(z), \ 0 \leq \xi < 1, z \in \mathbb{U}. \quad (2.1)$$

Where $h(z) = 1 + c_1z + c_2z^2 + \cdots$.

Using (1.5) and (2.1), we have

\[\frac{z(C_p^m(\alpha, \beta, \lambda, \mu) f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda) f(z)} - \xi = (p - \xi) h(z) + \frac{(p - \xi) zh'(z)}{(\mu + z - p) + \xi + (p - \xi)h(z)}. \]

(2.2)

Taking \(h(z) = \mu = \mu_1 + i\mu_1 \) and \(z h'(z) = \nu = \nu_1 + i\nu_1 \), we define the function \(\varphi(\mu, \nu) \) by:

\[\varphi(\mu, \nu) = (p - \xi)\mu + \frac{(p - \xi)\nu}{(\mu + z - p) + \xi + (p - \xi)\mu}. \]

This implies

(i) \(\varphi(\mu, \nu) \) is continuous in \(D = (\mathbb{C} - \frac{\mu + z - p + \xi}{\mu + z - p}) \times \mathbb{C} \),

(ii) \((1, 0) \in D \) and \(\Re \{ \varphi(1, 0) \} > 1 - \xi \),

(iii) For all \((i\mu_2, i\nu_1) \in D \) such that \(\nu_1 \leq -\frac{1}{2}(1 + \mu_2^2) \). Therefore

\[\Re \{ \varphi(i\mu_2, i\nu_1) \} = \Re \{ \frac{(p - \xi)\nu}{(\mu + z - p) + \xi + (p - \xi)\mu} \} = \frac{[(\alpha + \beta) + \xi]}{(\mu + z - p) + \xi + (p - \xi)\mu}, \]

\[\Re \{ \varphi(i\mu_2, i\nu_1) \} = \frac{[(\alpha + \beta) + \xi]}{(\mu + z - p) + \xi + (p - \xi)\mu} \leq \frac{[\alpha + \beta]}{2((\mu + z - p) + \xi) + (p - \xi)\mu} < 0. \]

Therefore, the function \(\varphi(\mu, \nu) \) satisfies the conditions of Lemma 2.1. This shows that \(\Re \{ h(z) \} > 0(z \in \mathbb{U}) \), that is, \(f(z) \in \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu) \).

Theorem 2.3. If \(f(z) \in A_p \) and \(\alpha, \beta, \mu, \lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathbb{U} \). Then

\[\mathcal{E}_m(p, \xi, \alpha, \beta, \mu) \subseteq \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu) \subseteq \mathcal{E}_{m+2}(p, \xi, \alpha, \beta, \mu). \]

Proof. Let \(f \in \mathcal{E}_m(p, \xi, \alpha, \beta, \mu) \Rightarrow C_p^m(\alpha, \beta, \mu, \lambda) f \in C_p(\xi), \Rightarrow \frac{z(C_p^m(\alpha, \beta, \mu, \lambda) f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda) g(z)} \in S^p_\nu(\xi) \Rightarrow C_p^m(\alpha, \beta, \mu, \lambda) f(z) \in C_p(\xi), \Rightarrow \frac{z(f(z))'}{p} \in \mathcal{E}_m(p, \xi, \alpha, \beta, \mu) \subseteq \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu), \Rightarrow \frac{z(f(z))'}{p} \in \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu) \Rightarrow C_p^{m+1}(\alpha, \beta, \mu, \lambda) f(z) \in C_p(\xi), \Rightarrow f \in \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu).

Theorem 2.4. If \(f(z) \in A_p \) and \(\alpha, \beta, \mu, \lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathbb{U} \). Then

\[\Re_m(p, \rho, \xi, \alpha, \beta, \mu) \subseteq \Re_{m+1}(p, \rho, \xi, \alpha, \beta, \mu) \subseteq \Re_{m+2}(p, \rho, \xi, \alpha, \beta, \mu). \]

Proof. Let \(f(z) \in \Re_m(p, \rho, \xi, \alpha, \beta, \mu) \) implies

\[\Re \left(\frac{z(C_p^m(\alpha, \beta, \mu, \lambda) f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda) g(z)} \right) > \rho, g(z) \in \mathcal{E}_m^*(p, \xi, \alpha, \beta, \mu), 0 \leq \rho < 1, z \in \mathbb{U}. \]

Since \(g(z) \in \mathcal{E}_m^*(p, \xi, \alpha, \beta, \mu) \subseteq \mathcal{E}_{m+1}(p, \xi, \alpha, \beta, \mu), \) let

\[\frac{z(C_p^{m+1}(\alpha, \beta, \mu, \lambda)g(z))'}{C_p^{m+1}(\alpha, \beta, \mu, \lambda)g(z)} = \xi + (p - \xi)H(z). \]

(2.3)
Suppose that
\[\left(\frac{z(C_p^{n+1}(\alpha, \beta, \mu, \lambda)f(z))'}{C_p^n(\alpha, \beta, \mu, \lambda)g(z)} \right)' = \rho + (p - \rho)h(z), \quad 0 \leq \rho < 1, \ z \in U. \tag{2.4} \]

Where \(h(z) = 1 + c_1z + c_2z^2 + \cdots \) Using (1.5), (2.3) and (2.4) we get
\[z(C_p^{n+1}(\alpha, \beta, \mu, \lambda)f(z))' = \frac{z(C_p^{n+1}(\alpha, \beta, \mu, \lambda)z\varphi(z))'}{C_p^n(\alpha, \beta, \mu, \lambda)g(z)} + \frac{(\alpha + \beta - \rho)(p + (p - \rho)h(z))}{\xi + (p - \xi)H(z) + \left(\frac{\alpha + \beta}{\mu + \lambda} - \rho\right)^2}. \tag{2.5} \]

Using (2.3) and (2.4) we have
\[z(C_p^{n+1}(\alpha, \beta, \mu, \lambda)f(z))' = [\rho + (p - \rho)h(z)][\xi + (p - \xi)H(z)] + (p - \rho)zh'(z). \tag{2.6} \]

Using (2.5) and (2.6), we get
\[z(C_p^{n+1}(\alpha, \beta, \mu, \lambda)f(z))' + \rho = (p - \rho)h(z) + \frac{(p - p - \rho)zh'(z)}{(\alpha + \beta - p + \xi) + (p - \xi)H(z)}. \tag{2.7} \]

Taking \(h(z) = \mu = \mu_1 + i\mu_1 \) and \(z\varphi(z) = \nu = \nu_1 + i\nu_1 \), we define the function \(\varphi(\mu, \nu) \) by
\[\varphi(\mu, \nu) = (p - \rho)\mu + \frac{(p - p - \rho)(\alpha + \beta - p + \xi) + (p - \xi)H(z)}{(\alpha + \beta - p + \xi) + (p - \xi)H(z)}. \]

Clearly conditions (i) and (ii) of Lemma 2.1 in \(D = \mathbb{C} \times \mathbb{C} \) are satisfied. For (iii), we proceed as follows.

\[\Re \{ \varphi(i\mu_2, \nu_1) \} = \nu_1(p - \rho)\left[\left(\frac{\alpha + \beta}{\mu + \lambda} - p + \xi\right) + (p - \xi)h_1(x_1, y_1)\right] + \left[\frac{(p - \xi)h_2(x_2, y_2)}{H(z)}\right]^2. \]

Where \(H(z) = h_1(x_1, y_1) + ih_2(x_2, y_2), h_1(x_1, y_1) \text{ and } h_2(x_2, y_2) \) being functions of \(x \) and \(y \) and \(\Re \{ h_1(x_1, y_1) \} > 0. \) Since \(\nu_1 \leq -\frac{1}{2}(1 + \mu_2^2) \), implies
\[\Re \{ \varphi(i\mu_2, \nu_1) \} = -\frac{1}{2}\left(1 + \mu_2^2\right)(p - \rho)\left[\left(\frac{\alpha + \beta}{\mu + \lambda} - p + \xi\right) + (p - \xi)h_1(x_1, y_1)\right]^2 + \left[\frac{(p - \xi)h_2(x_2, y_2)}{H(z)}\right]^2 < 0. \]

Applying Lemma 2.1, on \(\varphi(\mu, \nu) \), gives \(\Re \{ h(z) \} > 0(z \in U) \). This shows that \(f(z) \in R_{m+1}(p, \rho, \xi, \lambda, \alpha, \beta, \mu) \).

The following theorem can be proved in a similar manner.

Theorem 2.5. If \(f(z) \in A_p \) and \(\alpha, \beta, \mu, \lambda \geq 0, p \in N, m \in N_0 = N \cup \{0\}, z \in U \). Then
\[R_{m}(p, \rho, \xi, \lambda, \alpha, \beta, \mu) \subseteq R_{m+1}(p, \rho, \xi, \lambda, \alpha, \beta, \mu) \subseteq R_{m+2}(p, \rho, \xi, \lambda, \alpha, \beta, \mu). \]

3. Integral Operator

For \(c > -p \) and \(f(z) \in A_p \), the integral operator \(L_{c,p} : A_p \to A_p \) is defined by
\[L_{c,p}(f) = \frac{c + p}{z^c} - \int_0^z t^{c-1} f(t) dt. \tag{3.1} \]

The operator \(L_{c,p}(f) \) was introduced by Bernardi [12].
Theorem 3.1. Let $c > -p$, $0 \leq \xi < p$. If $f(z) \in \mathcal{S}_m^+(p, \xi, \lambda, \alpha, \beta, \mu)$, then $L_c(f) \in \mathcal{S}_m^+(p, \xi, \lambda, \alpha, \beta, \mu)$.

Proof. Using (3.1) we get

$$z\frac{(C_p^m(\alpha, \beta, \mu, \lambda)L_{c,p}f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda)L_cf(z)} = \xi + (p-\xi)h(z).$$

(3.3)

Where $h(z) = 1 + c_1z + c_2z^2 + \cdots$. By using (3.1) and (3.2) we get

$$z\frac{(C_p^m(\alpha, \beta, \mu, \lambda)f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda)f(z)} - \xi = (p-\xi)h(z) + \frac{(p-\xi)zh'(z)}{\xi + (p-\xi)h(z) + c}.$$

Taking $h(z) = \mu = \mu_1 + i\mu_1$ and $zh'(z) = \nu = \nu_1 + i\nu_1$, we define the function $\varphi(\mu, \nu)$ by

$$\varphi(\mu, \nu) = (p-\xi)\mu + \frac{(p-\xi)\nu}{\xi + c + (p-\xi)\mu}.$$

Clearly conditions (i) and (ii) of Lemma 2.1 in $D = \left(\mathbb{C} - \left\{\frac{\xi+c}{\xi-p}\right\}\right) \times \mathbb{C}$ are satisfied.

We proceed for (iii) as follows;

$$\Re\{\varphi(i\mu_2, \nu_1)\} = \frac{(\xi+c)(p-\xi)\nu_1}{\xi + c} \leq \frac{-(\xi+c)(p-\xi)(1+\mu_2^2)}{2(\xi + c)^2 + 2((p-\xi)\mu_2)^2} < 0.$$

Applying Lemma 2.1, we have $\Re\{h(z)\} > 0(z \in \mathbb{U})$, that is, $L_c(f) \in \mathcal{S}_m^+(p, \xi, \lambda, \alpha, \beta, \mu)$.

Theorem 3.2. Let $c > -p$, $0 \leq \xi < p$. If $f(z) \in \mathcal{C}_m(p, \xi, \lambda, \alpha, \beta, \mu)$, then $L_c(f) \in \mathcal{C}_m(p, \xi, \lambda, \alpha, \beta, \mu)$.

Proof. For the proof, use Theorem 3.1 and the fact that $f(z) \in C_p(\xi) \Leftrightarrow \frac{zf'(z)}{p} \in S_p^+(\xi)$.

Theorem 3.3. Let $c > -p$, $0 \leq \xi < p$. If $f(z) \in \mathfrak{R}_m(p, \rho, \xi, \lambda, \alpha, \beta, \mu)$, then $L_c(f) \in \mathfrak{R}_m(p, \rho, \xi, \lambda, \alpha, \beta, \mu)$.

Proof. As $f(z) \in \mathfrak{R}_m(p, \rho, \xi, \lambda, \alpha, \beta, \mu)$ gives

$$\Re\left(z\frac{(C_p^m(\alpha, \beta, \mu, \lambda)L_c(g(z))'}{C_p^m(\alpha, \beta, \mu, \lambda)L_c(g(z))}\right) > \rho.$$

Since $g(z) \in \mathcal{S}_m^+(p, \xi, \lambda, \alpha, \beta, \mu)$ implies $L_c(g(z)) \in \mathcal{S}_m^+(p, \xi, \lambda, \alpha, \beta, \mu)$. Let

$$z\frac{(C_p^m(\alpha, \beta, \mu, \lambda)L_c(g(z))'}{C_p^m(\alpha, \beta, \mu, \lambda)L_c(g(z))} = \xi + (p-\xi)H(z), \quad \Re(H(z)) > 0, \quad z \in \mathbb{U}.$$

Also let

$$\left(z\frac{(C_p^m(\alpha, \beta, \mu, \lambda)L_c(f(z))'}{C_p^m(\alpha, \beta, \mu, \lambda)L_c(g(z))}\right) = \rho + (p-\rho)h(z), \quad z \in \mathbb{U}.$$

(3.4)

Where $h(z) = 1 + c_1z + c_2z^2 + \cdots$.

After doing calculations, we get
\[
\left(\frac{zL^m(\alpha, \beta, \mu, \lambda)f(z)'}{L^m(\alpha, \beta, \mu, \lambda)g(z)} \right)' = \frac{z(C^m_\rho(\alpha, \beta, \mu, \lambda)L_\rho(zf'(z))'}{L^m(\alpha, \beta, \mu, \lambda)L_\rho(g(z))} + c \frac{(C^m_\rho(\alpha, \beta, \mu, \lambda)L_\rho(zf'(z))}{L^m(\alpha, \beta, \mu, \lambda)L_\rho(g(z))} + c
\]
Also
\[
\frac{z(C^m_\rho(\alpha, \beta, \mu, \lambda)L_\rho(zf'(z))'}{L^m(\alpha, \beta, \mu, \lambda)L_\rho(g(z))} = [\rho + (\rho - \rho)h(z)[\xi + (\rho - \xi)H(z)] + [(\rho - \rho)zh'(z)]
\]
Hence
\[
\left(\frac{z(C^m_\rho(\alpha, \beta, \mu, \lambda)f(z)'}{L^m(\alpha, \beta, \mu, \lambda)g(z)} \right)' - \rho = (\rho - \rho)h(z) + \frac{(\rho - \rho)zh'(z)}{\xi + (\rho - \xi)H(z) + c}
\] \hspace{1cm} (3.5)
Taking \(h(z) = \mu = \mu_1 + i\mu_2 \) and \(zh'(z) = \nu = \nu_1 + i\nu_2 \), we define the function \(\varphi(\mu, \nu) \) by
\[
\varphi(\mu, \nu) = (\rho - \rho)\mu + \frac{(\rho - \rho)\nu}{\xi + (\rho - \xi)H(z) + c}.
\] \hspace{1cm} (3.6)
It is easy to see that the function \(\varphi(\mu, \nu) \) satisfies the conditions (i) and (ii) of Lemma 2.1 in \(D = \mathbb{C} \times \mathbb{C} \). To verify the condition (iii), we proceed as follows.
\[
\Re\{\varphi(i\mu_2, \nu_1)\} = \frac{\nu_1(\rho - \rho)[(\xi + c) + (\rho - \xi)h_1(x_1, y_1)]}{[(\xi + c) + (\rho - \xi)h_1(x_1, y_1)]^2 + [(\rho - \xi)h_2(x_2, y_2)]^2}.
\]
Where \(H(z) = h_1(x_1, y_1) + i\mu_2(x_2, y_2) \), and \(h_1(x_1, y_1) \) and \(h_2(x_2, y_2) \) being functions of \(x \) and \(y \) and \(\Re(h_1(x_1, y_1)) > 0 \). By putting \(\nu_1 \leq -\frac{1}{2}(1 + \mu_2^2) \), we obtain
\[
\Re\{\varphi(i\mu_2, \nu_1)\} = -\frac{1}{2} \frac{(1 + \mu_2^2)(\rho - \rho)[(\xi + c) + (\rho - \xi)h_1(x_1, y_1)]}{[(\xi + c) + (\rho - \xi)h_1(x_1, y_1)]^2 + [(\rho - \xi)h_2(x_2, y_2)]^2} < 0.
\]
By applying Lemma 2.1 we get \(\Re\{h(z)\} > 0(z \in \mathbb{U}) \), that is, \(L_\rho(f) \in C_m(p, \xi, \lambda, \alpha, \beta, \mu) \).

REFERENCES

Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
E-mail address: maslina@ukm.my (Corresponding author)

Imran Faisal
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
E-mail address: faisalmath@gmail.com

Zahid Shareef
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
E-mail address: zahidmath@gmail.com