ON SOME PROPERTIES OF ANALYTIC AND MEROMORPHIC FUNCTIONS

(COMMUNICATED BY SHIGEYOSHI OWA)

M. NUNOKAWA, S.P. GOYAL, R. KUMAR

Abstract. In the present paper, we obtain some new properties of analytic and meromorphic functions

1. Introduction

Let \(p(z) \) be analytic in the open unit disc \(U = \{ z : z \in \mathbb{C}; |z| < 1 \} \) with \(p(0) = 1 \) and suppose that there exists a point \(z_0 (|z_0| < 1) \) such that

(i) \(|p(z)| > a \) \((|z| < |z_0|; 0 < a < 1)\) and \(|p(z_0)| = a \)

or

(ii) \(\text{Re} \{ p(z) \} < M \) \((|z| < |z_0|; M > 1)\) and \(\text{Re} \{ p(z_0) \} = M \).

Also let

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (1.1) \]

be analytic in \(U \) and

\[F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} b_n z^n \quad (1.2) \]

be meromorphic in \(U \).

In this paper, we shall obtain some basic results for \(z_0 p'(z_0)/p(z_0) \) under the condition (i) or (ii). Our main results will be applied to get some properties of \(z_0 f'(z_0)/f(z_0) \) or \(-z_0 F'(z_0)/F(z_0)\).

2010 Mathematics Subject Classification. 30C55.

Key words and phrases. Analytic functions; meromorphic functions; starlike functions; convex functions.

\(\odot \)2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
S.P.G is supported by CSIR, New Delhi, India for Emeritus Scientistship, under the scheme number 21(084)/10/EMR-II.

2. Main Results

Lemma 2.1. (see [1]). Let \(w(z) \) be regular in \(U \) with \(w(0) = 0 \). If \(w(z) \) attains its maximum value on the circle \(|z| = r \) at a given point \(z_0 \in U \), then \(z_0 w'(z_0) = kw(z_0) \), where \(k \) is a a real number and \(k \geq 1 \).

Theorem 2.2. Let \(p(z) \) be analytic in \(U \) with \(p(0) = 1 \) and suppose that there exists a point \(z_0, |z_0| < 1 \) such that \(|p(z)| > a \) (\(|z| < |z_0|\)) and \(|p(z_0)| = a \), where \(0 < a < 1 \).

Then we have
\[
\frac{z_0 p'(z_0)}{p(z_0)} = \text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) \leq -\frac{1-a}{1+a}.
\]

Proof. Let us put
\[
p(z) = \frac{a(1 + \psi(z))}{1 - \psi(z)}
\]
or
\[
\psi(z) = \frac{p(z) - a}{p(z) + a} \quad (|z| < |z_0|).
\]
Then \(\psi(z) \) is analytic in \(|z| < |z_0| \) and
\[
0 < \psi(0) = \frac{1-a}{1+a} < 1.
\]

By the hypothesis of the theorem, we have
\[
|p(z)| = a \left| \frac{1 + \psi(z)}{1 - \psi(z)} \right| > a \quad (|z| < |z_0|).
\]
Thus
\[
\left| \frac{1 + \psi(z)}{1 - \psi(z)} \right| > 1 \quad (|z| < |z_0|).
\]
It shows that
\[
\text{Re} \{\psi(z)\} > 0 \quad (|z| < |z_0|).
\]
On the other hand, we have
\[
|p(z_0)| = a \left| \frac{1 + \psi(z_0)}{1 - \psi(z_0)} \right| = a,
\]
this shows that
\[
\text{Re} \{\psi(z_0)\} = 0.
\]
Putting
\[
\Phi(z) = \frac{\psi(0) - \psi(z)}{\psi(0) + \psi(z)}, \quad \Phi(0) = 0,
\]
then we have \(\Phi(z) \) is analytic in \(U \), \(|\Phi(z)| < 1 \) for \(|z| < |z_0| \) and \(|\Phi(z_0)| = 1 \). Therefore, applying Lemma, we have that
\[
\frac{z_0 \Phi'(z_0)}{\Phi(z_0)} = -\frac{2\psi(0)z_0\psi'(z_0)}{(\psi(0))^2 + |\psi(z_0)|^2}
\]
\[
= k \geq 1.
\]
This means that \(z_0 \psi'(z_0) \) is real negative because \(0 < \psi(0) < 1 \). Then we say that
\[
\frac{z_0 p'(z_0)}{p(z_0)} = \frac{z_0 \psi'(z_0)}{1 + \psi(z_0)} + \frac{z_0 \psi'(z_0)}{1 - \psi(z_0)}
\]
\[
= \frac{2z_0'p'(z_0)}{1 - (\psi(z_0))^2} = \frac{2z_0'p'(z_0)}{1 + |\psi(z_0)|^2}
\]
\[
= -k(0) \left(\frac{(\psi(0))^2 + |\psi(z_0)|^2}{1 + |\psi(z_0)|^2} \right)
\leq -\psi(0) \left(\frac{(\psi(0))^2 + |\psi(z_0)|^2}{(\psi(0))^2 + (\psi(0))^2|\psi(z_0)|^2} \right)
< -\psi(0) = -\frac{1 - a}{1 + a}.
\]

This completes the proof.

Theorem 2.3. Let \(p(z) \) be analytic in \(U \) with \(p(0) = 1 \), suppose that there exists a point \(z_0 \ (|z_0| < 1) \) such that \(\text{Re} \{p(z)\} < M \), \(p(z) \neq 0 \) for \(|z| < |z_0| \), and \(\text{Re} \{p(z_0)\} = M \), where \(M > 1 \). Then we have
\[\text{Re} \{z_0 p'(z_0)\} \geq \frac{M - 1}{2}. \]

Proof. Let us put
\[g(z) = \frac{1}{2M - 1} \left(\frac{2M - p(z)}{p(z)} \right), \quad g(0) = 1. \]

Since \(\text{Re} \{p(z)\} < M \) for \(|z| < |z_0| \), we see that
\[\left| \frac{2M - p(z)}{p(z)} \right| > 1 \]
for \(|z| < |z_0| \). This gives us that
\[|g(z)| > \frac{1}{2M - 1} \quad (|z| < |z_0|) \]
and
\[|g(z_0)| = \frac{1}{2M - 1}. \]

Now
\[\text{Re} \left(\frac{z_0 g'(z_0)}{g(z_0)} \right) = \text{Re} \left(-\frac{z_0 p'(z_0)}{p(z_0)} - \frac{z_0 p'(z_0)}{2M - p(z_0)} \right) \tag{2.1} \]
Applying Theorem (2.2), we have
\[\text{Re} \left(\frac{z_0 g'(z_0)}{g(z_0)} \right) \leq -\frac{1}{1 + \frac{1}{2M - 1}} = -\frac{M - 1}{M}. \tag{2.2} \]
Putting \(p(z_0) = M + ia \), where \(a \) is a real number, we have
\[-\text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} + \frac{z_0 p'(z_0)}{2M - p(z_0)} \right) = -\text{Re} \left(\frac{2M}{M^2 + a^2 z_0 p'(z_0)} \right) \]
\[= -\frac{2M}{M^2 + a^2} \text{Re} \{z_0 p'(z_0)\}. \tag{2.3} \]
Now (2.1) in conjunction with (2.2) and (2.3) gives

\[
- \frac{2M}{M^2 + a^2} \text{Re} \{ z_0 p'(z_0) \} \leq - \frac{M - 1}{M}.
\]

This shows that

\[
\text{Re} \{ z_0 p'(z_0) \} \geq \left(\frac{M^2 + a^2}{2M} \right) \left(\frac{M - 1}{M} \right) \geq \frac{M - 1}{2}.
\]

(2.4)

It completes the proof.

Corollary 2.4. Let \(p(z) \) be analytic in \(U \) with \(p(0) = 1 \) and suppose that

\[
\text{Re} \left(p(z) + \frac{zp'(z)}{p(z)} \right) > \frac{a^2 + 2a - 1}{a + 1} \quad (|z| < 1; 0 < a < 1).
\]

(2.5)

Then we have \(|p(z)| > a \) in \(U \).

Proof. Suppose that there exists a point \(z_0 \) \((|z_0| < 1)\) such that \(a < |p(z)| \) in \(|z| < |z_0| \) and \(|p(z_0)| = a \), then Theorem (2.2) gives

\[
\frac{z_0 p'(z_0)}{p(z_0)} = \text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) \leq - \frac{1 - a}{1 + a}.
\]

Thus it follows that

\[
\text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} + p(z_0) \right) \leq - \frac{1 - a}{1 + a} + a = \frac{a^2 + 2a - 1}{a + 1}.
\]

It contradicts the hypothesis (2.5) and it completes the proof.

Corollary 2.5. Let \(f(z) \) defined by (1.1) be analytic and \(f'(z) \neq 0 \) in \(U \), suppose that

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \frac{a^2 + 2a - 1}{a + 1} \quad (z \in U; 0 < a < 1).
\]

Then we have

\[
\left| \frac{zf'(z)}{f(z)} \right| > a \quad \text{in} \quad U.
\]

Proof. Let us put

\[
p(z) = \frac{zf'(z)}{f(z)}, \quad p(0) = 1.
\]

Then we have

\[
1 + \frac{zf''(z)}{f'(z)} = p(z) + \frac{zp'(z)}{p(z)}.
\]

Applying Corollary 2.4, we have Corollary 2.5.

Corollary 2.6. Let \(p(z) \) be analytic in \(U \) with \(p(0) = 1 \) and suppose that there exists a point \(z_0 \) \((|z_0| < 1)\) such that \(\text{Re} \{ p(z) \} < M, p(z) \neq 0 \) for \(|z| < |z_0| \), \(\text{Re} \{ p(z_0) \} = M \) where \(M > 1 \).

Then we have

\[
\text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) \geq \frac{M - 1}{2M}.
\]
Proof. Applying (2.4) of Theorem (2.3), we have
\[\text{Re} \left\{ z_0 p'(z_0) \right\} \geq \left(\frac{M^2 + a^2}{2M} \right) \left(\frac{M - 1}{M} \right) \]
where \(p(z_0) = M + ia \), \(a \) is a real number.
Then it follows that
\[\text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) = \text{Re} \left(\frac{z_0 p'(z_0)}{M + ia} \right) \]
\[= \text{Re} \left\{ \left(\frac{M - ia}{M^2 + a^2} \right) z_0 p'(z_0) \right\} \]
\[= \left(\frac{M}{M^2 + a^2} \right) z_0 p'(z_0) \]
\[\geq \left(\frac{M}{M^2 + a^2} \right) \left(\frac{M^2 + a^2}{2M^2} \right) (M - 1) \]
\[= \frac{M - 1}{2M} \cdot \]
It completes the proof.

Applying the same method as the proof of Corollary (2.5) and (2.6), we have the following result.

Corollary 2.7. Let \(f(z) \) defined by (1.1) be analytic and in \(f'(z) \neq 0 \) in \(U \). Also suppose that
\[1 + \text{Re} \left(\frac{zf''(z)}{f'(z)} \right) < \frac{2M^2 + M - 1}{2M} \quad (|z| < 1; M > 1). \]
Then we have
\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) < M \quad \text{in} \ U. \]

Corollary 2.7 is equivalent to Corollary 2.7.

Corollary 2.8. Let \(f(z) \) defined by (1.1) be analytic and \(f'(z) \neq 0 \) in \(U \). Also suppose that
\[1 + \text{Re} \left(\frac{zf''(z)}{f'(z)} \right) < \beta \quad (|z| < 1; \beta > 1). \]
Then we have
\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) < \frac{2\beta - 1 + \sqrt{4\beta^2 - 4\beta + 9}}{4} \quad \text{in} \ U. \]

Corollary 2.9. Let \(F(z) \) defined by (1.2) be meromorphic and \(F'(z) \neq 0 \) in \(U \). Also suppose that
\[\left\{ 1 + \text{Re} \left(\frac{zf''(z)}{F'(z)} \right) \right\} > \frac{2M^2 - M + 1}{2M} \quad (|z| < 1; M > 1). \quad (2.6) \]
Then we have
\[-\text{Re} \left(\frac{zf'(z)}{F(z)} \right) < M \quad \text{in} \ U. \]
Proof. Let us put
\[p(z) = - z \frac{F'(z)}{F(z)}, \quad p(0) = 1, \]
then \(p(z) \) is analytic in \(U \) and it follows that
\[- \left(1 + z \frac{F''(z)}{F'(z)} \right) = p(z) - \frac{zp'(z)}{p(z)}. \tag{2.7} \]
If there exists a point \(z_0 (|z_0| < 1) \) such that \(\text{Re} \{ p(z_0) \} < M \) for \(|z| < |z_0| \) and \(\text{Re} \{ p(z_0) \} = M \), then from Corollary 2.5, we have
\[\text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) \geq \frac{M - 1}{2M}. \]
It follows that
\[- \left\{ 1 + \text{Re} \left(\frac{z_0 F''(z_0)}{F'(z_0)} \right) \right\} = \text{Re} \left(p(z_0) - \frac{z_0 p'(z_0)}{p(z_0)} \right) \leq M - \frac{M - 1}{2M} = \frac{2M^2 - M + 1}{2M}. \]
This contradicts (2.6) and it completes the proof of Corollary 2.9.

Acknowledgment. The authors are thankful to the worthy referee for his valuable suggestions for the improvement of the paper.

References

M. Nunokawa
University of Gunma, Hoshikuki-Cho 798-8, Chuou-Ward, Chiba (JAPAN)-2600808
E-mail address: Momaru_nuno@doctor.nifty.jp

S.P. Goyal
Department of Mathematics, University of Rajasthan, Jaipur (INDIA)-302055
E-mail address: somprg@gmail.com

R. Kumar
Department of Mathematics, Amity University Rajasthan, Jaipur (INDIA)-302002
E-mail address: rkyadav11@gmail.com