EXISTENCE OF POSITIVE PERIODIC SOLUTION OF AN IMPULSIVE DELAY FISHING MODEL

(COMMUNICATED BY AGACIK ZAFER)

DENGGUO XU, YING HUANG AND LIN LIANG

Abstract. In this paper, the impulsive delay fishing model is considered. By using the continuation theory for k-set contractions, the sufficient conditions of the existence of positive ω-periodic solutions of the impulsive delay fishing model are obtained.

1. Introduction

Many real-world evolution processes which depend on their prehistory and are subject to short time disturbances can be modeled by impulsive delay differential equations. Such processes occur in the theory of optimal control, population dynamics, biology, economics, etc. For details, see [1,2] and references therein. In the last few years, the existence problems of positive periodic solutions of differential equations with impulsive effects and/or delay have been studied by many researchers [3-9].

In [4], the author considered the impulsive Logistic model. The sufficient conditions of the existence and asymptotic stability of T-periodic solution were obtained. In [5], the author studied an impulsive delay differential equation and sufficient conditions are obtained for the existence and global attractivity of periodic positive solutions. It is shown that under appropriate linear periodic impulsive perturbations, the impulsive delay differential equation preserves the original periodicity and global attractive properties of the non-impulsive delay differential equation. In [6], impulsive delay Logistic model was investigated. And the existence results of positive periodic solution were obtained.

The main purpose of this paper is to study the impulsive delay fishing model. By using the continuation theory for k-set contractions [10,12], the existence of positive periodic solution of this model is considered and sufficient conditions are obtained for the existence of periodic positive solutions. This paper is organized in three sections including the introduction. Section 2 formulates the problem.

2000 Mathematics Subject Classification. 34K13, 34K45.

Key words and phrases. Fishing model; k-set contractions; Existence; Periodic solution.

©2008 Universiteti i Prishtinës, Prishtinë, Kosovë.
Submitted August 1, 2010. Published January 2, 2011.
and presents the preliminary results. The sufficient conditions for the existence of positive \(\omega\)-periodic solution of the model are established in section 3.

2. Preliminaries

Consider the following impulsive delay fishing model

\[
\begin{aligned}
x'(t) &= r(t)x(t) \left(1 - \frac{x(t)}{x_m(t)}\right) - E(t)x(t), \quad t \neq t_k, \\
x(t_k^+) - x(t_k) &= b_k x(t_k), \quad k = 1, 2, \ldots
\end{aligned}
\]

where \(x(t)\) is the density of population at time \(t\). The intrinsic growth rate of population and the carrying capacity are denoted by \(r(t)\), \(x_m(t)\) respectively. \(E(t)\) is fishing intensity and \(r(t) \geq E(t)\). \(\tau\) is the gestation period and \(b_k\) is impulsive perturbation at the moments of time \(t_k, k = 1, 2, \ldots\), \(x(t_k^+) = \lim_{h \to 0^+} x(t+h), x(t_k) = \lim_{h \to 0^+} x(t-h)\).

The following assumption will be needed throughout the paper.

(A1) \(0 < t_1 < t_2 < \ldots\) are fixed impulsive points with \(\lim_{k \to \infty} t_k = \infty\).

(A2) \(r(t), x_m(t)\) and \(E(t)\) are locally integrable functions on \((0, \infty)\).

(A3) \(\{b_k\}\) is a real sequence and \(1 + b_k > 0, k = 1, 2, \ldots\)

(A4) \(r(t), x_m(t), E(t), \prod_{0 < t_k < \tau} (1 + b_k)\) are positive continuous \(\omega\)-periodic functions and in the sequence the product equals to unity if the number of factors is zero.

We shall consider (1) with the initial condition

\[
x(t) = \phi(t), \quad -\tau \leq t \leq 0, \quad \phi(t) \in L([-\tau, 0], (0, \infty)),
\]

where \(L([-\tau, 0], (0, \infty))\) denotes the set of Lebesgue measurable functions on \([-\tau, 0]\).

By a solution \(x(t)\) of (1) satisfying initial condition (2) we mean an absolutely continuous function \(x(t)\) on \([-\tau, \infty)\), and satisfies conditions: \(x(t_k^+)\) and \(x(t_k)\) exist for any \(t_k, k = 1, 2, \ldots\), and \(x(t)\) satisfies (1) for almost everywhere in \([0, \infty)\) and at impulsive points \(t_k\) may have discontinuity of the first kind.

Under assumption \((A_1)-(A_4)\), obviously, all solution of (1) and (2) are positive \([0, \infty]\). In (1), let \(x(t) = e^\nu(t)\), then \(x'(t) = e^\nu(t)y'(t)\) and by substituting them into (1) and (2) we can obtain

\[
\begin{aligned}
y'(t) &= (r(t) - E(t)) \left(1 - \frac{r(t)}{(r(t) - E(t))x_m(t)} e^\nu(t-\tau)\right), \quad t \neq t_k, \\
y(t_k^+) - y(t_k) &= \ln(1 + b_k), \quad k = 1, 2, \ldots
\end{aligned}
\]

and the initial condition

\[
y(\tau) = \ln \phi(t), \quad -\tau \leq t \leq 0, \quad \phi(t) \in L([-\tau, 0], (0, \infty)).
\]

For investigating Eq. (3) and (4), we introduce following non-impulsive delay differential equation

\[
z'(t) = r(t) - E(t) - \frac{r(t)}{N(t)} \exp \left\{ z(t-\tau) + \sum_{0 < t_j < t-\tau} \ln(1 + b_j) \right\}
\]

with the initial condition

\[
z(t) = \ln \phi(t), \quad -\tau \leq t \leq 0, \quad \phi(t) \in L([-\tau, 0], (0, \infty)).
\]

Theorem 2.1. If \(z(t)\) is a solution of (5) and (6) on \([-\tau, \infty)\), then \(y(t) = z(t) + \sum_{0 < t_j < t} \ln(1 + b_j)\) is a solution of (3) and (4). And if \(y(t)\) is a solution of (3) and (4) on \([-\tau, \infty)\), then \(z(t) = y(t) - \sum_{0 < t_j < t} \ln(1 + b_j)\) is a solution of (5) and (6).
The proof of the Theorem 2.1 is similar to that of [Theorem 1, 11] and is omitted.

We give a brief explanation of the abstract continuation theory for k-set contractions that will be used in proof of the main results of the paper.

Let Z be a Banach space. For a bounded subset $A \subset Z$, let $\Gamma_Z(A)$ denote the (Kuratovski) measure of non-compactness defined by

$$\Gamma_Z(A) = \inf \{ \delta > 0 : \exists a finite number of subsets $A_i \subset A, A = \bigcup_i A_i, diam(A_i) \leq \delta \}.$$

Here, $diam(A_i)$ denotes the maximum distance between the points in the set A_i. Let X and Y be Banach spaces and Ω a bounded open subset of X. A continuous and bounded map $N : \bar{\Omega} \rightarrow Y$ is called k-set-contractive if for any bounded $A \subset \bar{\Omega}$ we have $\Gamma_Y(N(A)) \leq k \Gamma_X(A)$. Also, for a continuous and bounded map $T : X \rightarrow Y$ we define

$$l(T) = \sup \{ r \geq 0 : \forall \text{ bounded subset } A \subset X, r \Gamma_X(A) \leq \Gamma_Y(T(A)) \}.$$

Theorem 2.2. [12] Let $L : X \rightarrow Y$ be a Fredholm operator of index zero, and $q(t) \in Y$ be a fixed point. Suppose that $N : \bar{\Omega} \rightarrow Y$ is k-set-contractive with $k < l(L)$, where $\Omega \subset X$ is bounded, open, and symmetric about 0 $\in \Omega$. Suppose further that:

(i) $Lx \neq \lambda N x + \lambda q(t)$ for $x \in \partial \Omega, \lambda \in (0,1)$ and

(ii) $[QN(x) + Qq(t,x)] \cdot [QN(-x) + Qq(t,x)] < 0$, for $x \in Ker(L) \cap \partial \Omega$.

where $[\cdot,\cdot]$ is a bilinear form on $Y \times X$ and Q is the projection of Y onto $coker(L)$. Then there exists $x \in \bar{\Omega}$ such that $Lx - Nx = q(t)$

3. **Main results**

For the convenience of investigation, we still denote $x(t)$ by $x(t)$ in Eqs. (5) and (6), then the new form is obtained

$$x'(t) = q(t) - p(t)e^{\tau(t-\tau)}$$

with the initial condition

$$x(t) = \ln \phi(t), \quad -\tau \leq t \leq 0, \quad \phi(t) \in L([-\tau,0],(0,\infty)),$$

where $q(t) = r(t) - E(t)$ and $p(t) = \frac{r(t)}{	au} \prod_{0 < t_j < \tau - \tau}(1 + \tau_j)$ are positive continuous ω-periodic functions.

Denote $Y = C^0_{\omega}$ is a linear Banach space of real-valued ω-periodic functions on R. In C^0_{ω}, for $x \in C^0_{\omega}$, the norm is defined by $|x|_0 = \sup_{t \in R} |x(t)|$. Let $X = C^1_{\omega}$ denote the linear space of ω-periodic functions with the first-order continuous derivative. C^1_{ω} is a Banach space with norm $|x|_1 = \max \{|x|_0, |x'|_0\}$. Let $L : X \rightarrow Y$ be given by $Lx = \frac{dx}{dt} = x'$.

Since $|Lx|_0 = |x'|_0 \leq |x|_1$, we see that L is a bounded linear map. Next define a nonlinear map $N : X \rightarrow Y$ by $Nx(t) = -p(t)e^{\tau(t-\tau)}$. Now, Eq. (7) has a solution $x(t)$ if and only if $Lx = Nx + q(t)$ for some $x \in X$.

Theorem 3.1. Let

$$M = \max \left\{ \left| \ln \frac{\bar{q}}{\bar{p}} \right|, R_1, M_1, M_2 \right\}, \quad R_1 = \ln \frac{\bar{q}}{\bar{p}^m} + 2\omega \bar{q}, \quad M_1 = |q|_0 + |p|_0 e^{R_1},$$

$$M_2 = M_1 \omega + \max \left\{ \left| \ln \frac{\bar{q}}{|p|_0} \right|, \left| \ln \frac{\bar{q}}{p^m} \right| \right\}.$$
Let \(\Omega = \{ A \subset \mathbb{R} \mid g = 1 \} \).

From (11) and (12), we can see that

\[
\xi = \int_0^\omega g(t)dt, \quad \bar{p} = \frac{1}{\omega} \int_0^\omega p(t)dt, \quad p^m = \min_{t \in [0, \omega]} p(t), \quad |q_0| = \max_{t \in [0, \omega]} q(t), \quad |p_0| = \max_{t \in [0, \omega]} p(t).
\]

Suppose that the condition \(|p_0|e^{\lambda t} < 1 \) holds, then Eq. (7) has at least one \(\omega \)-periodic solution. Therefore, the system (1) has at least one positive \(\omega \)-periodic solution.

Proof. Let \(\Omega = \{ x(t) \in X : |x| < r \} \), where \(r > M \) such that \(k_0 = |p_0|e^{\lambda t} < 1 \), \(A \subset \Omega \) be a bounded subset and let \(\eta = \Gamma_X(A) \), then for any \(\varepsilon > 0 \), there is a finite family of subset \(A_i \) with \(A = \bigcup_i A_i \) and \(\text{diam}_1(A_i) \leq \eta + \varepsilon \). Now it follows from the fact that \(g(t, x_1) = p(t)e^{\xi_1} \) is uniformly continuous on any compact subset of \(R \times R \) that, for any \(x, u \in A_i \), may as well let \(x \leq u \), there exists a \(\sigma \in (x, u) \), such that

\[
|Nx - Nu|_0 = \sup_{0 \leq t \leq \omega} |g(t, x(t) - \tau) - g(t, u(t) - \tau)| \leq |p|_0 \sup_{0 \leq t \leq \omega} |e^{\xi(t-\tau)} - e^{\eta(t-\tau)}|.
\]

In this case, \(|\sigma| < r \), therefore, \(|Nx - Nu|_0 \leq |p|_0e^{\xi} |x - u|_0 \leq k_0 \eta + k_0 \varepsilon \). i.e.

\[
\Gamma_Y(N(A)) \leq k_0 \Gamma_X(A).
\]

Therefore, the map \(N \) is \(k_0 \)-set contractive.

If \(Lx = \lambda Nx + \lambda q(t) \) for any \(x(t) \in X, \lambda \in (0, 1) \), i.e.

\[
x'(t) = \lambda \left(q(t) - p(t)e^{\xi(t-\tau)} \right).
\]

Since \(x(t) \) is a real-valued \(\omega \)-periodic function, integrating (9) from 0 to \(\omega \), we have

\[
\int_0^\omega p(t)e^{\xi(t-\tau)}dt = \int_0^\omega q(t)dt.
\]

Therefore

\[
\int_0^\omega |x'(t)|dt \leq \lambda \left[\int_0^\omega q(t)dt + \int_0^\omega p(t)e^{\xi(t-\tau)}dt \right] < 2 \int_0^\omega q(t)dt = 2\omega\bar{q}.
\]

Let \(s = t - \tau \), then

\[
\int_0^\omega p(t)e^{\xi(t-\tau)}dt = \int_{-\tau}^\omega p(s + \tau)e^{\xi(s)}ds \geq p^m \int_{-\tau}^\omega e^{\xi(s)}ds = p^m \int_0^\omega e^{\xi(s)}ds.
\]

It follows from (10) that

\[
\int_0^\omega q(t)dt \geq p^m \int_0^\omega e^{\xi(s)}ds = \omega p^m e^{\xi_1},
\]

for some \(\xi_1 \in [0, \omega] \). Therefore, we have

\[
x(\xi_1) \leq \ln \frac{\bar{q}}{p^m}.
\]

From (11) and (12), we can see that

\[
x(t) \leq x(\xi_1) + \int_0^\omega |x'(t)| \leq \ln \frac{\bar{q}}{p^m} + 2\omega\bar{q} = R_1.
\]
From (9), we have
\[x'(t) \leq \lambda[q(t) + p(t)e^{x(t - \tau)}] < |q|_0 + |p|_0 e^{R_1}. \]
So that
\[|x'|_0 < |q|_0 + |p|_0 e^{R_1} \equiv M_1. \tag{3.7} \]
On the other hand, there exits a \(\xi_2 \in [0, \omega] \), such that
\[\int_0^\omega p(t)e^{x(t - \tau)}dt = \int_{-\tau}^{0} p(s + \tau)e^{x(s)}ds = p(\xi_2) \int_{-\tau}^{0} e^{x(s)}ds = p(\xi_2) \int_0^\omega e^{x(s)}ds. \]
Hence, from (10), we have
\[\int_0^\omega e^{x(t)}dt = \frac{\int_0^\omega q(t)dt}{p(\xi_2)}. \]
So, there exits a \(\xi_3 \in [0, \omega] \), such that
\[e^{x(\xi_3)} = \frac{\bar{q}}{p(\xi_2)}. \]
i.e.
\[x(\xi_3) = \ln \frac{\bar{q}}{p(\xi_2)}. \]
It is clear that
\[\ln \frac{\bar{q}}{|p|_0} \leq x(\xi_3) \leq \ln \frac{\bar{q}}{p^m}. \]
Therefore,
\[|x(\xi_3)| \leq \max \left\{ \ln \frac{\bar{q}}{|p|_0}, \ln \frac{\bar{q}}{p^m} \right\} \equiv M_0. \tag{3.8} \]
We get
\[|x|_0 \leq |x(\xi_3)| + \int_0^\omega |x'|_0dt < M_0 + M_1 \omega \equiv M_2. \]
This implies that
\[|x|_1 \leq M \equiv \max \left\{ \left| \ln \frac{\bar{q}}{p} \right|, R_1, M_1, M_2 \right\}. \]
Therefore, for \(x(t) \in \partial \Omega, \lambda \in (0, 1), \)
\[Lx \neq \lambda Nx + \lambda q(t). \]
This implies that the condition (i) of Theorem 2.2 holds.

In the following we define a bounded bilinear form \([\cdot, \cdot] \) on \(Y \times X \) by \([y, x] = \int_0^\omega y(t)x(t)dt. \) And define \(Q : Y \rightarrow \text{coker}(L) \) by \(y \rightarrow \int_0^\omega y(t)dt. \) For \(x \in \ker(L) \cap \partial \Omega, \)
we can get \(x = r \) or \(x = -r. \) So, we have
\[[QN(x) + Qq(t), x] = \left([QN(-x) + Qq(t), x] = \right) \]
\[r^2 \omega^2 \left[\int_0^\omega q(t)dt - e^r \int_0^\omega p(t)dt \right] \left[\int_0^\omega q(t)dt - e^{-r} \int_0^\omega p(t)dt \right] = r^2 \omega^2 (\bar{q} - e^r \bar{p})(\bar{q} - e^{-r} \bar{p}). \]
Since \(r > M \geq |\ln \frac{\bar{q}}{p}|, \) we have \(\bar{q} - e^r \bar{p} < 0, \bar{q} - e^{-r} \bar{p} > 0 . \) This implies that the condition (ii) of Theorem 2.2 holds.

Hence, it follows from Theorem 2.2 that there is a function \(x(t) \in \tilde{\Omega} \subset X \) such that \(Lx - Nx = q(t). \) Thus, the proof of Theorem 3.1 is completed. \(\square \)
Acknowledgments. We express our sincere thanks to the referees for their valuable suggestions and comments for improving this paper.

References

DENGGUO XU
DEPARTMENT OF MATHEMATICS, CHUXIONG NORMAL UNIVERSITY, CHUXIONG, YUNNAN 675000, CHINA
E-mail address: mathsxdg@sohu.com

YING HUANG
DEPARTMENT OF MATHEMATICS, CHUXIONG NORMAL UNIVERSITY, CHUXIONG, YUNNAN 675000, CHINA
E-mail address: huangying201@yahoo.cn

LIN LIANG
DEPARTMENT OF MATHEMATICS, CHUXIONG NORMAL UNIVERSITY, CHUXIONG, YUNNAN 675000, CHINA
E-mail address: cxlianglin@cxtc.edu.cn