COMPACT MULTIPLICATION OPERATORS ON NONLOCALLY
CONVEX WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

(COMMUNICATED BY FUAD KITTANEH)

J. S. MANHAS

Abstract. Let V be a system of weights on a completely regular Hausdorff
space and let $B(E)$ be the topological vector space of all continuous linear
operators on a Hausdorff topological vector space E. Let $CV^0_0(X,E)$ and
$CV^b(X,E)$ be the nonlocally convex weighted spaces of continuous functions.
In the present paper, we characterize compact multiplication operators M_{ψ}
on $CV^0_0(X,E)$ (or $CV^b(X,E)$) induced by the operator-valued mappings
$\psi : X \to B(E)$ (or the vector-valued mappings $\psi : X \to E$, where E is a
topological algebra).

1. Introduction

The theory of multiplication operators has extensively been studied during the
last three decades on different function spaces. Many authors like Abrahamse [1],
Axler [6], Halmos [12], Singh and Kumar [35], Takagi and Yokouchi [45] have stud-
ied these operators on L^p–spaces, whereas Arazy [4], Axler [5], Bonet, Domanski
and Lindström [9], Shields and Williams [34], Feldman [10], Ghatage and Sun
[11], Stegenga [42], and Vukotic [46] have explored these operators on spaces of
analytic functions. Also, a study of these operators on weighted spaces of continu-
ous functions has been made by Singh and Manhas [36, 37, 38, 39, 40], Manhas and
Singh [24], Manhas [21, 22, 23], Khan and Thaheem [17, 18], Alsulami and Khan
[2, 3], and Oubbi [29]. In this paper, we have made efforts to characterize compact
multiplication operators on the nonlocally convex weighted spaces of continuous
functions generalizing some of the results of the author [22, 23] and Alsulami and
Khan [2].
2. PRELIMINARIES

Throughout this paper, we shall assume, unless stated otherwise, that X is a completely regular Hausdorff space and E is a non-trivial Hausdorff topological vector space with a base \mathcal{N} of closed balanced shrinkable neighbourhoods of zero. A neighbourhood G of zero in E is called shrinkable [19] if $tG \subseteq \text{int}G$, for $0 \leq t < 1$. It is proved by Klee [19, Theorem 4 and Theorem 5] that every Hausdorff topological vector space has a base of shrinkable neighbourhoods of zero, and also the Minkowski functional ρ_G of any such neighbourhood G is continuous and satisfies

$$\quad \bar{G} = \{ y \in E : \rho_G(y) \leq 1 \}, \quad \text{int}G = \{ y \in E : \rho_G(y) < 1 \}.$$

Let $CV(X, E)$ be the vector space of all continuous E-valued functions on X. Let V be a set of non-negative upper semicontinuous functions on X. Then V is said to be directed upward if for given $u, v \in V$ and $\alpha \geq 0$, there exists $w \in V$ such that $\alpha u, \alpha v \leq w$ (pointwise). A directed upward set V is called a system of weights if for each $x \in X$, there exists $v \in V$ such that $v(x) > 0$. Let U and V be two systems of weights on X. Then we say that $U \leq V$ if for every $u \in U$, there exists $v \in V$ such that $u \leq v$. Now, for a given system of weights V, we define

$$\quad CV_0(X, E) = \{ f \in CV(X, E) : vf \text{ vanishes at infinity on } X \text{ for each } v \in V \},$$

and

$$\quad CV_b(X, E) = \{ f \in CV(X, E) : vf(X) \text{ is bounded in } E \text{ for each } v \in V \}.$$

Clearly $CV_0(X, E) \subseteq CV_b(X, E)$. When $E (= \mathbb{R}$ or $\mathbb{C})$, the above spaces are denoted by $CV_0(X)$ and $CV_b(X)$. The weighted topology on $CV_b(X, E)$ (resp. $CV_0(X, E)$) is defined as the linear topology which has a base of neighbourhoods of zero consisting of all sets of the form

$$\quad N(v, G) = \{ f \in CV_b(X, E) : vf(X) \subseteq G \},$$

where $v \in V$ and $G \in \mathcal{N}$.

With this topology, the vector space $CV_b(X, E)$ (resp. $CV_0(X, E)$) is called the weighted space of vector-valued continuous functions which is not necessarily locally convex. For more details on these weighted spaces, we refer to [13, 14, 15, 16, 19, 27]. In case E is a locally convex space, a detailed information can be found in [7, 8, 25, 26, 30, 31, 32, 33, 43, 44]. Let $B(E)$ be the vector space of all continuous linear operators on E. We denote by \mathcal{B}, the family of all bounded subsets of E. For each $B \in \mathcal{B}$ and $G \in \mathcal{N}$, we define the set

$$\quad W(B, G) = \{ T \in B(E) : T(B) \subseteq G \}.$$

Then clearly $B(E)$ is a topological vector space with a linear topology which has a base of neighbourhoods of zero consisting of all sets of the form $W(B, G)$. This topology is known as the topology of uniform convergence on bounded subsets of E.

By a topological algebra E we mean a topological vector space which is also an algebra such that multiplication in E is separately continuous. Multiplication in E is said to be left (right) hypocontinuous if for each $G \in \mathcal{N}$ and $B \in \mathcal{B}$, there exists $H \in \mathcal{N}$ such that $BH \subseteq (\text{resp. } HB \subseteq G)$. In case E is equipped with both left and right hypocontinuous multiplication, we call E as a topological
algebra with hypocontinuous multiplication. Clearly every topological algebra with joint continuous multiplication is always a topological algebra with hypocontinuous multiplication. For more details on these algebras, we refer to Mallios [20].

For the mapping \(\psi : X \to B(E) \) (or \(\psi : X \to E, \) \(E \) as a topological algebra), we define the linear map \(M_\psi : CV_0(X,E) \to F(X,E) \) by \(M_\psi(f) = \psi f, \) for every \(f \in CV_0(X,E), \) where \(F(X,E) \) denotes the vector space of all functions from \(X \) into \(E \) and the product \(\psi f \) is defined pointwise on \(X \) as \((\psi f)(x) = \psi_x(f(x)) \) (or \((\psi f)(x) = \psi(x)(f(x)) \), for every \(x \in X \). In case \(M_\psi \) takes \(CV_0(X,E) \) into itself and is continuous, we call \(M_\psi \), the multiplication operator on \(CV_0(X,E) \) induced by the mapping \(\psi \).

3. **Compact Multiplication Operators**

Throughout this section, we shall assume that for each \(x \in X \), there exists \(f \in CV_0(X) \) such \(f(x) \neq 0 \). In case \(X \) is locally compact Hausdorff space this condition is automatically satisfied.

In order to present the desired results, we need to record some definitions and results as follows.

Let \(T \in B(E) \). Then \(T \) is said to be compact if it maps bounded subsets of \(E \) into relatively compact subsets of \(E \). A completely regular Hausdorff space \(X \) is called a \(K_\mathbb{R} \) \(-\) space if a function \(f : X \to \mathbb{R} \) is continuous if and only if \(f \mid K \) is continuous for each compact subset \(K \) of \(X \). Clearly all locally compact or metrizable spaces are \(K_\mathbb{R} \) \(-\) spaces. A completely regular Hausdorff space \(X \) is said to be a \(V_\mathbb{R} \) \(-\) space with respect to a given system of weights \(V \) on \(X \) if a function \(f : X \to \mathbb{R} \) is necessarily continuous whenever, for each \(v \in V \), the restriction of \(f \) to \(\{x \in X : v(x) \geq 1\} \) is continuous. Also, if \(V_1 \leq V_2 \) for two systems of weights on \(X \), then of course any \((V_1)_\mathbb{R} \) \(-\) space is again a \((V_2)_\mathbb{R} \) \(-\) space. For more details on \(V_\mathbb{R} \) \(-\) spaces, we refer to Bierstedt [8].

A subset \(H \subseteq CV_0(X,E) \) is called equicontinuous at \(x_0 \in X \) if for every neighbourhood \(G \) of zero in \(E \), there exists a neighbourhood \(N \) of \(x_0 \) in \(X \) such that \(f(x) - f(x_0) \in G \), for every \(x \in N \) and \(f \in H \). If \(H \) is equicontinuous at every point of \(X \), then we say that \(H \) is equicontinuous on \(X \). Moreover, using nets, we say that a subset \(H \subseteq CV_0(X,E) \) is equicontinuous on \(X \) if and only if for every \(x \in X \) and for every net \(x_\alpha \to x \) in \(X \),

\[
\sup \{ \rho_G(f(x_\alpha) - f(x)) : f \in H \} \to 0, \quad \text{for every} \; G \in \mathcal{N}.
\]

The following generalized Arzela-Ascoli type theorem and related results can be found in Khan and Oubbi [16].

Theorem 3.1. Let \(X \) be a completely regular Hausdorff \(V_\mathbb{R} \) \(-\) space and let \(E \) be a quasi-complete Hausdorff topological vector space. Then a subset \(M \subseteq CV_0(X,E) \) is relatively compact if and only if

(i) \(M \) is equicontinuous;

(ii) \(M(x) = \{ f(x) : f \in M \} \) is relatively compact in \(E \), for each \(x \in X \);

(iii) \(vM \) vanishes at infinity on \(X \) for each \(v \in V \) (i.e., for each \(v \in V \) and \(G \in \mathcal{N} \), there exists a compact set \(K \subseteq X \) such that \(v(x)f(x) \in G \), for all \(f \in M \) and \(x \in X \setminus K \)).
Corollary 3.2. Let X be a locally compact Hausdorff space and let E be a quasi-complete Hausdorff topological vector space. Let V be a system of constant weights on X. Then a subset $M \subseteq CV_0(X,E)$ is relatively compact if and only if

(i) M is equicontinuous;

(ii) $M(x) = \{f(x) : f \in M\}$ is relatively compact in E, for each $x \in X$;

(iii) M uniformly vanishes at infinity on X (i.e., for every $G \in N$, there exists a compact set $K \subseteq X$ such that $f(x) \in G$, for all $f \in M$ and $x \in X \setminus K$).

Remark. Theorem 3.2 and Corollary 3.7 of [24] are proved for a completely regular Hausdorff V_R-space X. But with slight modification in the proofs both the results are still valid if we take X as a completely regular Hausdorff V_R-space.

Now we are ready to present the characterization of compact multiplication operators on $CV_0(X,E)$.

Theorem 3.3. Let X be a completely regular Hausdorff V_R-space and let E be a non-zero quasi-complete Hausdorff topological vector space. Let $\psi : X \rightarrow B(E)$ be an operator-valued mapping. Then $M_\psi : CV_0(X,E) \rightarrow CV_0(X,E)$ is a compact multiplication operator if the following conditions are satisfied:

(i) $\psi : X \rightarrow B(E)$ is continuous in the topology of uniform convergence on bounded subsets of E;

(ii) for every $v \in V$ and $G \in N$, there exist $u \in V$ and $H \in N$, such that $u(x)y \in H$ implies that $v(x)\psi_x(y) \in G$, for every $x \in X$ and $y \in E$;

(iii) for every $x \in X$, $\psi(x)$ is a compact operator on E;

(iv) $\psi : X \rightarrow B(E)$ vanishes at infinity uniformly on X, i.e., for each $G \in N$ and $B \in B$, there exists a compact set $K \subseteq X$ such that $\psi_x(B) \subseteq G$, for every $x \in X \setminus K$;

(v) for every bounded set $F \subseteq CV_0(X,E)$, the set $\{\psi_x : f \in F\}$ is equicontinuous for every $x \in X$.

Proof. According to [24, Corollary 3.7] and Remark 1, conditions (i) and (ii) imply that M_ψ is a multiplication operator on $CV_0(X,E)$. Let $S \subseteq CV_0(X,E)$ be a bounded set. To prove that M_ψ is a compact operator, it is enough to show that the set $M_\psi(S)$ satisfies all the conditions of Theorem 1. Fix $x_0 \in X$. We shall verify that the set $M_\psi(S)$ is equicontinuous at x_0. Let $G \in \mathcal{N}$. Then there exists $H \in \mathcal{N}$ such that $H + H \subseteq G$. Choose $v \in V$ such that $v(x_0) \geq 1$. Let $F_v = \{x \in X : v(x) > 1\}$. Consider the set $B = \{f(x) : x \in F_v, f \in S\}$. Clearly the set B is bounded in E. By condition (i), there exists a neighbourhood K_1 of x_0 such that $\psi_x - \psi_{x_0} \in W(B,H)$, for every $x \in K_1$. Further, it implies that $\psi_x(f(x) - f(x_0)) \in H$, for every $x \in K_1 \cap F_v$ and $f \in S$. Again, by condition (v), there exists a neighbourhood K_2 of x_0 such that $\psi_{x_0}(f(x) - f(x_0)) \in H$, for every $x \in K_2$ and $f \in S$. Let $N = K_2 \cap K_1 \cap F_v$. Then for every $x \in N$ and $f \in S$, we have

$$\psi_x(f(x)) - \psi_{x_0}(f(x_0)) = \psi_x(f(x)) - \psi_{x_0}(f(x)) + \psi_{x_0}(f(x)) - \psi_{x_0}(f(x_0)) \in H + H \subseteq G.$$

This proves the equicontinuity of the set $M_\psi(S)$ at x_0 and hence it is equicontinuous on X. This established the condition (i) of Theorem 1. To prove condition (ii) of Theorem 1, we shall show that the set $M_\psi(S)(x_0)$ is relatively compact in E for each $x_0 \in X$. Since the set $B = \{f(x_0) : f \in S\}$ is bounded in E and ψ_{x_0} is compact
operator on E, by condition (iii), it follows that the set $\psi_{x_0}(B) = M_\psi(S)(x_0)$ is relatively compact in E. Finally we shall establish condition (iii) of Theorem 1 by showing that the set $vM_\psi(S)$ vanishes at infinity on X for each $v \in V$. Fix $v \in V$ and $G \in \mathcal{N}$. Since the set $B = \{v(x)f(x) : x \in X, f \in S\}$ is bounded in E, according to Condition (iv), there exists a compact set $K \subseteq X$ such that $\psi_x(B) \subseteq G$, for every $x \in X \setminus K$. That is, $v(x)\psi_x(f(x)) \in G$, for every $x \in X \setminus K$ and $f \in S$. This proves that the set $vM_\psi(S)$ vanishes at infinity on X. With this the proof of the theorem is complete.

\begin{theorem} Let X be a completely regular Hausdorff V_R-space and let E be a non-zero quasi-complete Hausdorff topological vector space. Let U be a system of constant weights on X such that $\cup \subseteq V$. Let $\psi : X \to B(E)$ be an operator-valued mapping. Then conditions (i) through (v) in Theorem 3 are necessary and sufficient for M_ψ to be a compact multiplication operator on $CV_0(X,E)$.
\end{theorem}

\textbf{Proof.} We suppose that M_ψ is a compact multiplication operator on $CV_0(X,E)$.

To prove condition (i), we fix $x_0 \in X, B \in \mathcal{B}$ and $G \in \mathcal{N}$. Let $v \in V$ and $f \in CV_0(X)$ such that $v(x_0) \geq 1$ and $f(x_0) = 1$. Let $K_1 = \{x \in X : v(x)f(x) \geq 1\}$. Then K_1 is a compact subset of X such that $x_0 \in K_1$. According to [26, Lemma 2, p. 69], there exists $h \in CV_0(X)$ such that $h(K_1) = 1$. For each $y \in B$, we define the function $g_y : X \to E$ as $g_y(x) = h(x)y$, for every $x \in X$. If we put $F = \{g_y : y \in B\}$, then F is clearly bounded in $CV_0(X,E)$ and hence the set $M_\psi(F)$ is relatively compact in $CV_0(X,E)$. According to Theorem 1, the set $M_\psi(F)$ is equicontinuous at x_0. This means that there exits a neighbourhood K_2 of x_0 such that $\psi_x(g_y(x)) - \psi_{x_0}(g_y(x_0)) \in G$, for every $x \in K_2$ and $y \in B$. Let $K = K_1 \cap K_2$.

Then we have $\psi_x(y) - \psi_{x_0}(y) \in G$, for every $x \in K$ and $y \in B$. This shows that $\psi_x - \psi_{x_0} \in W(B,G)$, for every $x \in K$. This proves that $\psi : X \to B(E)$ is continuous at x_0 and hence on X. In view of Remark 1, the proof of condition (ii) follows from Corollary 3.7 of [24]. To establish condition (iii), let $x_0 \in X$.

We select $f \in CV_0(X)$ such that $f(x_0) = 1$. Let $B \in \mathcal{B}$. Then for each $y \in B$, we define the function $h_y : X \to E$ as $h_y(x) = f(x)y$, for every $x \in X$. Clearly the set $S = \{h_y : y \in B\}$ is bounded in $CV_0(X,E)$ and hence the set $M_\psi(S)$ is relatively compact in $CV_0(X,E)$. Again, according to Theorem 1, it follows that the set $M_\psi(S)(x_0) = \{\psi_{x_0}(y) : y \in B\}$ is relatively compact in E. This proves that ψ_{x_0} is a compact operator on E.

Now, to prove condition (iv), we suppose that $\psi : X \to B(E)$ does not vanishes at infinity on X. This implies that there exist $G \in \mathcal{N}$ and $B \in \mathcal{B}$ such that for every compact set $K \subseteq X$, there exists $y_k \in X\setminus K$ for which $\psi_{x_k}(B) \subseteq G$. Further, it implies that there exists $y_k \in B$ such that $\psi_{x_k}(y_k) \notin G$. According to [41, Lemma 3.1], there exists an open neighbourhood N_k of x_k such that each $v \in V$ is bounded on N_k. Let $O_k = N_k \cap X\setminus K$. Then O_k is an open neighbourhood of x_k for each compact set $K \subseteq X$. Further, according to [26, Lemma 2, p. 69], there exists $f_k \in CV_0(X)$ such that $0 \leq f_k \leq 1$, $f_k(x_k) = 1$ and $f_k(X\setminus O_k) = 0$. For each compact $K \subseteq X$, we define the function $h_k : X \to E$ as $h_k(x) = f_k(x)y_k$, for every $x \in X$. Clearly the set $M = \{h_k : K \subseteq X, K \text{ compact subset}\}$ is bounded in $CV_0(X,E)$ and hence the set $M_\psi(M)$ is relatively compact in $CV_0(X,E)$. Since $U \subseteq V$, we can select $v \in V$ such that $v(x) \geq 1$, for every $x \in X$. Again, Theorem 1 implies that the set $vM_\psi(M)$ vanishes at infinity on X. This implies that there exists a compact set $K_0 \subseteq X$ such that $v(x)\psi_x(h_k(x)) \in G$, for all $h_k \in M$ and for every $x \in X\setminus K_0$. Since $v(x) \geq 1$, for all x, it follows that $\psi_x(f_k(x)y_k) \in G$, for every $x \in X\setminus K_0$.
For \(x = x_{k_0} \), we have \(\psi_{x_{k_0}} (y_{k_0}) \in G \), which is a contradiction. This proves that
\(\psi : X \to B(E) \) vanishes at infinity on \(X \).
Finally, we shall prove condition (v). Let \(F \subseteq CV_0(X,E) \) be a bounded set.
Fix \(x_0 \in X \) and \(G \in \mathcal{N} \). Then there exists \(H \in \mathcal{N} \) such that
\(H + H \subseteq G \). Clearly the set \(B = \{ f(x) : x \in X, f \in F \} \) is bounded in \(E \).
Since \(\psi : X \to B(E) \) is continuous at \(x_0 \), there exists a neighbourhood \(N_1 \) of \(x_0 \) in \(X \) such that \(\psi_x (f(x)) - \psi_{x_0} (f(x)) \in H \), for every \(x \in N_1 \) and \(f \in F \). Again, since
the set \(M_\psi (F) \) is relatively compact in \(CV_0(X,E) \), according to Theorem 1, the set \(M_\psi (F) \) is
equicontinuous at \(x_0 \). This implies that there exists a neighbourhood \(N_2 \) of \(x_0 \) in \(X \) such that
\(\psi_x (f(x)) - \psi_{x_0} (f(x_0)) \in H \), for every \(x \in N_2 \) and \(f \in F \). Let \(N = N_1 \cap N_2 \). Then for every \(x \in N \) and \(f \in F \), we have
\(\psi_{x_0} (f(x) - f(x_0)) = \psi_{x_0} (f(x)) - \psi_{x_0} (f(x_0)) \in H + H \subseteq G \).
This proves condition (v). This completes the proof of the theorem as the sufficient
part is already proved in Theorem 3. □

Theorem 3.5. Let \(X \) be a completely regular Hausdorff \(V_R \) - space and let \(E \) be a quasi-complete Hausdorff topological algebra with hypocontinuous multiplication containing the unit element \(e \). Let \(U \) be a system of constant weights on \(X \) such that \(U \leq V \). Then the vector-valued mapping \(\psi : X \to E \) induces a compact
multiplication operator \(M_\psi \) on \(CV_0(X,E) \) if and only if

(i) \(\psi : X \to E \) is continuous;
(ii) for every \(v \in V \) and \(G \in \mathcal{N} \), there exist \(u \in V \) and \(H \in \mathcal{N} \) such that
\(u(x) y \in H \) implies that \(v(x) \psi(x) y \in G \), for every \(x \in X \) and \(y \in E \);
(iii) for every \(x \in X \), the operator \(L_{\psi(x)} : E \to E \), defined by \(L_{\psi(x)}(y) = \psi(x)y \),
for every \(y \in E \), is compact;
(iv) \(\psi : X \to E \) vanishes at infinity on \(X \);
(v) for every bounded set \(F \subseteq CV_0(X,E) \), the set \(\{ L_{\psi(x)}af : f \in F \} \) is equicontinuous for every \(x \in X \).

Proof. In [24, Theorem 3.2], Manhas and Singh have characterized the weighted composition operators \(W_{\psi,\phi} \) on \(CV_0(X,E) \) induced by the mappings \(\phi : X \to X \) and \(\psi : X \to E \). If we take \(\phi : X \to X \) as the identity map, then Theorem 3.2 of
Manhas and Singh [24] and Remark 1 implies that \(M_\psi \) is a multiplication operator on \(CV_0(X,E) \) if and only if condition (i)-(ii) of Theorem 5 hold. Also, using
similar arguments of Theorem 4, it can be shown that \(M_\psi \) is a compact operator on \(CV_0(X,E) \). □

Corollary 3.6. Let \(X \) be a locally compact Hausdorff space and let \(E \) be a non-zero
quasi-complete Hausdorff topological vector space. Let \(V \) be a system of constant
weights on \(X \). Let \(\psi : X \to B(E) \) be an operator-valued mapping. Then \(M_\psi : CV_0(X,E) \to CV_0(X,E) \) is a compact multiplication operator if and only if the
following conditions are satisfied:

(i) \(\psi : X \to B(E) \) is continuous in the topology of uniform convergence on
bounded subsets of \(E \);
(ii) for every \(G \in \mathcal{N} \), there exists \(H \in \mathcal{N} \), such that \(y \in H \) implies that \(\psi_x (y) \in G \), for every \(x \in X \) and \(y \in E \);
(iii) for every \(x \in X \), \(\psi(x) \) is a compact operator on \(E \);
Remark. (i) In case E is a quasi-complete locally convex Hausdorff space and X is a locally compact Hausdorff space, Theorem 4 reduces to [23, Theorem 3.4].

(ii) In Corollary 6, if E is a quasi-complete locally convex Hausdorff space, it reduces to Theorem 2.4 of Manhas [22].

(iii) If X is as $V_{\mathbb{R}}$-space without isolated points, then it is proved in [2, Corollary 4] that there is no non-zero compact multiplication operator M_ψ on $CV_0(X,E)$. But if X is a $V_{\mathbb{R}}$-space with isolated points, then Theorem 4 provide (e.g. see Example 1 below) non-zero compact multiplication operators M_ψ on some weighted spaces $CV_0(X,E)$ whereas it is not the case with some of the L^p-spaces and spaces of analytic functions. In [35], Singh and Kumar have shown that the zero operator is the only compact multiplication operator on L^p-spaces (with non-atomic measure). In [9], Bonet Domanski and Lindstrom have shown that there is no non-zero compact multiplication operator on Weighted Banach Spaces of analytic functions. Also, recently, Ohno and Zhao [28] have proved that the zero operator is the only compact multiplication operator on Bloch Spaces.

Example 3.1. Let $X = \mathbb{Z}$, the set of integers with the discrete topology and let $V = K^{+}(\mathbb{Z})$, the set of positive constant functions on \mathbb{Z}. Let $E = C_b(\mathbb{R})$ be the Banach space of bounded continuous complex valued functions on \mathbb{R}. For each $t \in \mathbb{Z}$, we define an operator $A_t : C_b(\mathbb{R}) \rightarrow C_b(\mathbb{R})$ as $A_t f(s) = f(t+s)$, for every $f \in C_b(\mathbb{R})$ and for every $s \in \mathbb{R}$. Clearly, for each $t \in \mathbb{Z}$, A_t is a compact operator. Let $\psi : \mathbb{Z} \rightarrow B(E)$ be defined as $\psi(t) = e^{-|t|}A_t$, for $t \in \mathbb{Z}$. Then all the conditions of Corollary 6 are satisfied by the mapping ψ and hence M_ψ is a compact multiplication operator on $C_0(\mathbb{Z},E)$. In case we take $E = C(\mathbb{R})$ with compact-open topology, then the mapping $\psi : \mathbb{Z} \rightarrow B(E)$ defined as above does not induce the compact multiplication operator M_ψ on $C_0(\mathbb{Z},E)$. But, if $E = C(\mathbb{R})$ with compact-open topology and we define $\psi : \mathbb{Z} \rightarrow B(E)$ as $\psi(t) = e^{-|t|}A_{t_0}$, for every $t \in \mathbb{Z}$, where A_{t_0} is a fixed compact operator on $C(\mathbb{R})$ defined as $A_{t_0}f(s) = f(t_0)$, for every $f \in C(\mathbb{R})$ and for every $s \in \mathbb{R}$, then it turns out that M_ψ is a compact multiplication operator on $C_0(\mathbb{Z},E)$.

Acknowledgement. The author is thankful to the referee for bringing into notice the article by Alsulami and Khan [2]. The work of the author is independent of the paper [2] and there is no overlapping of our results with those of [2]. In fact, if X is a $V_{\mathbb{R}}$-space with isolated points, then our main Theorem 4 gives necessary and sufficient conditions for M_ψ to be non-zero compact multiplication operator on some weighted spaces $CV_0(X,E)$ which makes this result different from the result given in [2].

References

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, P. C. 123 Al-Khod., Sultanate of Oman

E-mail address: manhas@squ.edu.om