ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE

(Communicated by Salah Mecheri)

Ould Ahmed Mahmoud Sid Ahmed

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. In this paper we investigate some properties of the class of n-power quasi-normal operators, denoted $[nQN]$, satisfying $T^n|T|^2 - |T|^2T^n = 0$ and some relations between n-normal operators and n-quasinormal operators.

1. Introduction and Terminologies

A bounded linear operator on a complex Hilbert space, is quasi-normal if T and T^*T commute. The class of quasi-normal operators was first introduced and studied by A. Brown [5] in 1953. From the definition, it is easily seen that this class contains normal operators and isometries. In [9] the author introduce the class of n-power normal operators as a generalization of the class of normal operators and study sum properties of such class for different values of the parameter n. In particular for $n = 2$ and $n = 3$ (see for instance [9,10]). In this paper, we study the bounded linear transformations T of complex Hilbert space H that satisfy an identity of the form

$$T^nT^* = T^*TT^n,$$

(1.1)

for some integer n. Operators T satisfying (1.1) are said to be n-power quasi-normal.

Let $\mathcal{L}(H) = \mathcal{L}(H,H)$ be the Banach algebra of all bounded linear operators on a complex Hilbert space H. For $T \in \mathcal{L}(H)$, we use symbols $R(T)$, $N(T)$ and T^* the range, the kernel and the adjoint of T respectively.

Let $W(T) = \{ \langle Tx | x \rangle : x \in H, \|x\| = 1 \}$ the numerical range of T. A subspace $M \subset H$ is said to be invariant for an operator $T \in \mathcal{L}(H)$ if $TM \subset M$, and in this situation we denote by $T|M$ the restriction of T to M. Let $\sigma(T), \sigma_a(T)$ and $\sigma_p(T)$, respectively denote the spectrum, the approximate point spectrum and point spectrum of the operator T.

2000 Mathematics Subject Classification. 47B20, 47B99.
Key words and phrases. Operator, Quasi-normal, n-normal; reducing subspace, Hilbert space.
©2008 Universiteti i Prishtinës, Prishtinë, Kosovë.
For any arbitrary operator $T \in \mathcal{L}(H)$, $|T| = (T^*T)^{\frac{1}{2}}$ and

$$[T^*, T] = T^*T - TT^* = |T|^2 - |T^*|^2$$

(the self-commutator of T).

An operator T is normal if $T^*T = TT^*$, positive-normal (posinormal) if there exists a positive operator $P \in \mathcal{L}(H)$ such that $TT^* = T^*PT$, hyponormal if $[T^*, T]$ is nonnegative (i.e. $|T^*|^2 \leq |T|^2$, equivalently $\|T^*x\| \leq \|Tx\|$ for all $x \in H$), quasi-hyponormal if $T^*[T^*, T]T$ is nonnegative, paranormal if $\|Tx\|^2 \leq \|T^2x\|$ for all $x \in H$, n-isometry if

$$T^*T^n - \binom{n}{1}T^{n-1}T + \binom{n}{2}T^{n-2}T^2 - \cdots + (-1)^n I = 0,$$

m-hyponormal if there exists a positive number m, such that

$$m^2(T - \lambda I)^*(T - \lambda I) - (T - \lambda I)(T - \lambda I)^* \leq 0; \text{ for all } \lambda \in \mathbb{C}.$$

Let $[N]; [QN]; [H]$; and $(m-H)$ denote the classes constituting of normal, quasi-normal, hyponormal, and m-hyponormal operators. Then

$$[N] \subset [QN] \subset [H] \subset [m-H].$$

For more details see [1, 2, 3, 11, 14, 15].

Definition 1.1. ([7]) An operator $T \in \mathcal{L}(H)$ is called (α, β)-normal ($0 \leq \alpha \leq 1 \leq \beta$) if

$$\alpha^2 T^*T \leq TT^* \leq \beta^2 T^*T.$$

or equivalently

$$\alpha \|Tx\| \leq \|T^*x\| \leq \beta \|Tx\| \text{ for all } x \in H.$$

Definition 1.2. ([9]) Let $T \in \mathcal{L}(H)$. T is said n-power normal operator for a positive integer n if

$$T^nT^* = T^*T^n.$$

The class of all n-normal operators is denoted by $[nN]$.

Proposition 1.3. ([9]) Let $T \in \mathcal{L}(H)$, then T is of class $[nN]$ if and only if T^n is normal for any positive integer n.

Remark. T is n-power normal if and only if T^n is $(1,1)$-normal.

The outline of the paper is as follows: Introduction and terminologies are described in the first section. In the second section we introduce the class of n-power quasi-normal operators in Hilbert spaces and we develop some basic properties of this class. In section three we investigate some properties of a class of operators denoted by $([\mathbb{Z}^n])$ contained the class $[nQN]$.

2. **BASIC PROPERTIES OF THE CLASS $[nQN]$**

In this section, we will study some property which are applied for the n-power quasi-normal operators.

Definition 2.1. For $n \in \mathbb{N}$, an operator $T \in \mathcal{L}(H)$ is said to be n-power quasi-normal operator if

$$T^nT^* = T^*T^{n+1}.$$
We denote the set of n-power quasi-normal operators by $[nQN]$. It is obvious that the class of all n-power quasi-normal operators properly contained classes of n-normal operators and quasi-normal operators, i.e., the following inclusions holds

$$ [nN] \subset [nQN] \quad \text{and} \quad [QN] \subset [nQN]. $$

Remark.

(1) A 1-power quasi-normal operator is quasi-normal.

(2) Every quasi-normal operator is n-power quasi-normal for each n.

(3) It is clear that a n-power normal operator is also n-power quasi-normal.

That the converse need not hold can be seen by choosing T to be the unilateral shift, that is, if $H = l^2$, the matrix $T = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$. It is easily verified that $T^2T^* - T^*T^2 \neq 0$ and $(T^2T^* - T^*T^2)T = 0$. So that T is not 2-power normal but is a 2-power quasi-normal.

Remark. An operator T is n-power quasi-normal if and only if $[T^n, T^*T] = [T^n, T^*]T = 0$.

Remark. An operator T is n-power quasi-normal if and only if $T^n|T|^2 = |T|^2T^n$.

First we record some elementary properties of $[nQN]$:

Theorem 2.2. If $T \in [nQN]$, then

(1) T is of class $[2nQN]$.

(2) If T has a dense range in H, T is of class $[nN]$. In particular, if T is invertible, then T^{-1} is of class $[nQN]$.

(3) If T and S are of class $[nQN]$ such that $[T, S] = [T, S^*] = 0$, then TS is of class $[nQN]$.

(4) If S and T are of class $[nQN]$ such that $ST = TS = T^*S = ST^* = 0$, then $S + T$ is of class $[nQN]$.

Proof.

(1) Since T is of $[nQN]$, then

$$ T^nT^*T = T^*TT^n. \quad (2.1) $$

Multiplying (2.1) to the left by T^n, we obtain

$$ T^{2n}T^*T = T^*TT^{2n}. $$

Thus T is of class $[2nQN]$.

(2) Since T is of class $[nQN]$, we have for $y \in R(T)$, $y = Tx$, $x \in H$, and

$$ \|(T^*T^n - T^nT^*)y\| \leq \|(T^nT^* - T^*T^n)Tx\| = \|(T^{n+1}T^* - T^nT^{n+1})x\| = 0. $$

Thus, T is n-power normal on $R(T)$ and hence T is of class $[nN]$. In case T invertible, then it is an invertible operator of class $[nN]$ and so

$$ T^nT^* = T^*T^n. $$

This in turn shows that

$$ T^{-n}(T^*T^{-1})^{-1} = [(TT^*)^{-n}]^{-1} = [T^{n+1}T^*]^{-1} = [T^{-1}T^{-1}]T^{-n}, $$
which prove the result.

\[(3)\]
\[(TS)^n(TS)^*TS = T^nS^nT^*S^*TS = T^nT^*TS^nS^*S\]
\[= T^*T^{n+1}S^*S^{n+1} = (TS)^*(TS)^{n+1}.\]

Hence, \(TS\) is of class \([nQN]\).

\[(4)\]
\[(T + S)^n(T + S)^*(T + S) = (T^n + S^n)(T^*T + S^*S)\]
\[= T^nT^*T + S^nS^*S\]
\[= T^*T^{n+1} + S^*S^{n+1}\]
\[= (T + S)^*(T + S)^{n+1}.\]

Which implies that \(T + S\) is of class \([nQN]\).

Proposition 2.3. If \(T\) is of class \([nQN]\) such that \(T\) is a partial isometry, then \(T\) is of class \([(n+1)QN]\).

Proof. Since \(T\) is a partial isometry, therefore
\[TT^*T = T \quad [4, p.153]. \quad (2.2)\]
Multiplying (2.2) to the left by \(T^*T^{n+1}\) and using the fact that \(T\) is of class \([nNQ]\), we get
\[T^*T^{n+2} = T^*T^{n+2}T^*\]
\[= T^nT^*T.TT^*T\]
\[= T^{n+1}T^*T,\]
which implies that \(T\) is of class \([(n+1)QN]\).

The following examples show that the two classes \([2NQ]\) and \([3NQ]\) are not the same.

Example 2.4. Let \(H = \mathbb{C}^3\) and let \(T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathcal{L}(\mathbb{C}^3).\) Then by simple calculations we see that \(T\) is not of class \([3QN]\) but of class \([2QN]\).

Example 2.5. Let \(H = \mathbb{C}^3\) and let \(S = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix} \in \mathcal{L}(\mathbb{C}^3).\) Then by simple calculations we see that \(S\) is not of class \([2QN]\) but of class \([3QN]\).

Proposition 2.6. Let \(T \in \mathcal{L}(H)\) such that \(T\) is of class \([2QN]\) \(\cap [3QN]\), then \(T\) is of class \([nQN]\) for all positive integer \(n \geq 4\).

Proof. We proof the assertion by using the mathematical induction. For \(n = 4\) it is a consequence of Theorem 2.2. 1.

We prove this for \(n = 5\). Since \(T \in [2QN]\),
\[T^2T^*T = T^*T^3, \quad (2.3)\]

multiplying (2.3) to the left by \(T^3\) we get
\[T^5T^*T = T^3T^*T^3.\]
Thus we have
\[T^5T^*T = T^3T^*T^3 = T^2T^*T^2 = T^*T^6. \]

Now assume that the result is true for \(n \geq 5 \) i.e.
\[T^nT^*T = T^*TT^n, \]
then
\[T^{n+1}T^*T = TT^*T^{n+1} = TT^*T^3T^{n-2} = T^3T^*TT^{n-2} = T^*T^4T^{(n-2)} = T^*T^{n+2}. \]

Thus \(T \) is of class \([n+1]QN\).

Proposition 2.7. If \(T \) is of class \([nQN]\) such that \(N(T^*) \subset N(T) \), then \(T \) is of class \([nN]\).

Proof. In view of the inclusion \(N(T^*) \subset N(T) \), it is not difficult to verify the normality of \(T^n \).

Next couple of results shows that \([nQN]\) is not translation invariant

Theorem 2.8. If \(T \) and \(T-I \) are of class \([2QN]\), then \(T \) is normal.

Proof. First we see that the condition on \(T-I \) implies
\[T^2(T^*T) - T^2T^* - 2T(T^*T) + 2TT^* = (T^*T)T^2 - T^*T^2 - 2(T^*T)T + 2T^*T. \]

Since \(T \) is of class \([2QN]\), we have
\[-T^2T^* - 2T(T^*T) + 2TT^* = -T^*T^2 - 2(T^*T)T + 2T^*T, \]
or
\[-TT^* - 2(T^*T)T^* + 2TT^* = -T^{*2}T - 2T^*(T^*T) + 2T^*T \] \hspace{1cm} (2.4)

We first show that (2.4) implies
\[N(T^*) \subset N(T) \] \hspace{1cm} (2.5)

Suppose \(T^*x = 0 \). From (2.4), we get
\[-3T^{*2}Tx + 2T^*Tx = 0. \] \hspace{1cm} (2.6)

Then
\[-3T^{*3}Tx + 2T^{*2}Tx = 0. \]

Therefore, as \(T \) is of class \([2QN]\),
\[-3T^{*2}TT^*x + 2T^{*2}Tx = 0 \]
and hence
\[2T^{*2}Tx = 0. \]

Consequently, (2.6) gives \(2T^*Tx = 0 \) or \(Tx = 0 \). This proves (2.5). As observe in Proposition 2.7 and Proposition 1.3 \(T^2 \) is normal. This along with (2.4) gives
\[-(T^*T) + TT^* = -(T^*T)T + T^*T, \]
or
\[T^* (T^* T - TT^*) = T^* T - TT^*. \] (2.7)

If \(N(T^* - I) = \{0\} \), then (2.7) implies \(T \) is normal.

Now assume that \(N(T^* - I) \) is non trivial. Let \(T^* x = x \). Then (2.6) gives
\[T^{*2} T x - T^* T x = T^* T x - T x. \]

Since \(T^{*2} T = TT^* \), we have
\[T^* T x = T x. \]

Therefore
\[||T x||^2 = < T^* T x \mid x >= < T x \mid x >= < x \mid T^* x >= ||x||^2. \]

Hence
\[
||T x - x||^2 = ||T x||^2 + ||x||^2 - 2 Re < T x \mid x > \\
= ||T x||^2 - ||x||^2 \\
= 0.
\]

Or \(T x = x \). Thus \(N(T^* - I) \subset N(T - I) \). This along with (2.7), yields
\[T(T^* T - TT^*) = T^* T - TT^* \]
and so
\[T(T^* T - TT^*) T = (T^* T - TT^*) \]
or
\[TT^* T^2 - T^2 T^* T = T^* T^2 - TT^* T. \]

Since \(T^2 T^* = T^* T^2 \) and \(T^3 T^* = T^* T^3 \) we deduce that \(T^* T^2 = TT^* T \). Thus \(T \) is quasinormal. From (2.5), the normality of \(T \) follows.

In attempt to extend the above result for operators of class \([nQN]\), we prove

Theorem 2.9. If \(T \) is of class \([2QN] \cap [3QN]\) such that \(T - I \) is of class \([nQN]\), then \(T \) is normal.

Proof. Since \(T - I \) is of class \([nQN]\), we have
\[
\sum_{k=1}^{n} a_k T^k T^* T - \sum_{k=1}^{n} a_k T^k T^* = T^* T \sum_{k=1}^{n} a_k T^k - T^* \sum_{k=1}^{n} a_k T^k, \quad a_k = (-1)^{n-k}{n \choose k}.
\]

Under the condition on \(T \), we have by Proposition 2.6
\[
a_1 T (T^* T) - \left(\sum_{k=1}^{n} a_k T^k \right) T^* = a_1 (T^* T) T - T^* \left(\sum_{k=1}^{n} a_k T^k \right)
\]
or
\[
a_1 (T^* T) T^* - T \left(\sum_{k=1}^{n} a_k T^* T^k \right) = a_1 T^* (T^* T) - \left(\sum_{k=1}^{n} a_k T^* T^k \right) T. \] (2.8)

(2.8) implies that \(N(T^*) \subset N(T) \). In fact, let \(T^* x = 0 \). From (2.8), we have
\[
a_1 T^{*2} T x - \left(\sum_{k=1}^{n} a_k T^* T^k \right) T x = 0.
\]

\(T \) is of class \([2QN]\) and of class \([3QN]\), we deduce that
\[
a_1 T^{*2} T x - a_1 T^* T x - a_2 T^{*2} T x = 0 \] (2.9)
and hence
\[a_1 T^{*3}Tx - a_1 T^{*2}T - a_2 T^{*3}Tx = 0 \]
Hence
\[a_1 T^{*2}Tx. \]
Consequently (2.9) gives \(T^*Tx = 0 \), which implies that \(Tx = 0 \).
It follows by Proposition 2.7 that \(T^k \) is normal for \(k = 2, 3, ..., n \) and hence
\(T(T^*T) - TT^* = (T^*T)T - T^*T \)
or
\(T^*(TT^* - T^*T) = TT^* - T^*T. \)
Hence,
\((T^* - I)(TT^* - T^*T) = 0. \)
A similar argument given in as in the proof of Theorem 2.8 gives the desired result.

Theorem 2.10. If \(T \) and \(T^* \) are of class \([nQN] \), then \(T^n \) is normal.

First we establish

Lemma 2.11. If \(T \) is of class \([nQN] \), then \(N(T^n) \subset N(T^{*n}) \) for \(n \geq 2 \).

Proof. Suppose \(T^nx = 0 \). Then
\[T^n(T^*T)T^{n-1}x = 0. \]
By hypotheses,
\[T^*TT^nT^{n-1}x = 0, \]
which implies
\[TT^nT^{n-1}x = 0. \]
Hence
\[T^nT^{n-1}x = 0. \]
Under the condition on \(T \), we have
\[T^*TT^nT^{n-2}x = 0 \]
Hence
\[T^nT^{n-2}x = 0. \]
By repeating this process we can find
\[T^nT^{n-1}x = 0. \]

Proof of Theorem 2.10. By hypotheses and Lemma 2.11
\[N(T^{*n}) = N(T^n). \]
Since \(T \) is of \([nQN] \), \([T^nT^* - T^*T^n]T^n = 0 \), i.e. \([T^nT^* - T^*T^n] = 0 \) on \(clR(T) \).
Also the fact that \(N(T^*) \) is a subset of \(N(T^n) \) gives \([T^nT^* - T^*T^n] = 0 \) on \(N(T^*) \).
Hence the result follows.

Theorem 2.12. If \(T \) and \(T^2 \) are of class \([2QN] \), and \(T \) is of class \([3QN] \), then \(T^2 \) is quasinormal.
Proof. The condition that T^2 is of class $[2QN]$ gives

$$T^*4(T^*2T^2) = (T^*2T^2)T^*4$$

Implies

$$T^*5(T^*T)T = (T^*2T^2)T^*4$$

Since T if of class $[3QN]$, we have

$$T^*2(T^*T)T^*3T = (T^*2T^2)T^*4$$

And hence

$$T^*2(T^*T)^2T^*2 = (T^*2T^2)^2T^*4 \quad [T \text{ is of class } [2QN]].$$

Implies

$$(T^*T)^2T^*4 = (T^*2T^2)T^*4 \quad [T \text{ is of class } [2QN]]$$

or

$$T^4((T^*T)^2 - T^*2T^2) = 0.$$

By Lemma 2.11,

$$T^*2T^2((T^*T)^2 - T^*2T^2) = 0$$

or

$$T^2[(T^*T)^2 - T^*2T^2)] = 0. \tag{2.10}$$

Hence

$$T^*2[((T^*T)^2 - T^*2T^2)] = 0, \quad [N(T^2) \text{ is a subset of } N(T^*2)].$$

Or

$$[((T^*T)^2 - T^*2T^2)]T^2 = 0. \tag{2.11}$$

Since T is of class $[2QN]$, T^2 commutes with $(T^*T)^2$. Hence from (2.10) and (2.11), we get the desired conclusion.

Theorem 2.13. If T and T^2 are of class $[2QN]$ and $N(T) \subset N(T^*)$, then T^2 is quasinormal.

Proof. By the condition that T^2 is of class $[2QN]$, we have

$$(T^*2T^2)^*4 = T^*4(T^*2T^2)$$

$$= T^*4(T^*2T^2)$$

$$= T^*4(T^*T)T^*2$$

$$= T^*(T^*T)T^*4T \quad [T \text{ is of class } [2QN]]$$

Thus we have

$$\{(T^*2T^2)^*4 - (T^*(T^*T))^2T^*2\} = 0$$

or

$$T^2\{T^2(T^*2T^2) - (T^*(T^*T))^2\} = 0.$$

Then under the kernel condition

$$T\{T^2(T^*2T^2) - (T^*(T^*T))^2\} = 0$$

or

$$\{(T^*2T^2)^*4 - (T^*(T^*T))^2\} = 0 \quad \text{for } x \in clR(T^*).$$

Since $N(T) \subset N(T^*)$,

$$\{(T^*2T^2)^*4 - (T^*(T^*T))^2\}y = 0 \quad \text{for } y \in N(T).$$
Thus
\[
\{(T^*T^2)T^*T^2 - [T^*(T^*T)]^2\} = 0
\]
or
\[
T^2(T^*T^2) = [(T^*T)T]^2
= T^*T^2 T^*T^2
= T^*T^2(T^*T)T
= T^*(T^*T)T^3
\text{[Tis of class [2QN]}
= (T^*T^2)T^2.
\]
This proves the result.

Theorem 2.14. Let \(T \) be an operator of class \([2QN]\) with polar decomposition \(T = U|T| \). If \(N(T^*) \subset N(T) \), then the operator \(S \) with polar decomposition \(U^2|T| \) is normal.

Proof. It follows by Proposition 2.7 that \(T^2 \) is normal and \(N(T^*) = N(T^+2) \) and by Lemma 2.11 we have
\[
N(T) = N(T^*). \tag{2.12}
\]
As a consequence, \(U \) turns out to be normal and it is easy to verify that
\[
|T|U|T|^2U^*|T| = |T|U^*|T|^2U|T|.
\]
Since
\[
N(|T|) = N(U) = N(U^*),
\]
\[
|T|U|T|^2U^* = |T|U^*|T|^2U
\]
and hence
\[
U|T|^2U^* = U^*|T|^2U.
\]
Again by the normality of \(U \), we have
\[
U|T|U^* = U^*|T|U \tag{2.13}
\]
Also \(U^+2U^2 = U^*U \), showing \(U^2 \) to be normal partial isometry with \(N(U^2) = N(|T|) \). Thus \(U^2|T| \) is the polar decomposition Note that (2.13) the normality shows that \(U^2 \) and \(|T| \) are commuting. Consequently
\[
(U^2|T|)^*(U^2|T|) = |T|U^*U^2|T|
= |T|U^2U^*2|T|
= (U^2|T|)(U^2|T|)^*.
\]
This completes the proof.

Corollary 2.15. If \(T \) is of class \([2QN]\) and \(0 \notin W(T) \), then \(T \) is normal

Proof. Since \(0 \notin W(T) \) gives \(N(T) = N(T^*) = \{0\} \) and so by our Proposition 2.7, \(T^2 \) is normal. Then \([T^*T, TT^*] = 0 \). Now the conclusion follows form [8].

Theorem 2.16. Let \(T \) is of class \([2QN]\) such that \([T^*T, TT^*] = 0\). Then \(T^2 \) is quasinormal.
Proof.

\[(T^{*2}T^2)T^2 = T^*(T^*T)T^3\]
\[= T^*T^2T^*T^2\]
\[= (T^*T)(TT^*)T^2\]
\[= (TT^*)(T^*T)T^2\]
\[= TT^*T^2T^*\]
\[= T(T^*T)(TT^*)T\]
\[= T(T^*T)(T^*T)T\]
\[= T^2(T^*2T^2).\]

This proves the result.

Theorem 2.17. If \(T\) is of class \([2QN]\) and \([3QN]\) with \(N(T) \subset N(T^*)\), then \(T\) is quasinormal.

Proof.

\[T^3(T^*T) = T^*(T^*T)T^{*2}\] [\(T\) is of class \([2QN]\)]
\[= (T^*T)T^*3\]

Hence

\[[T^{*2}T - T^*TT^*]T^{*2} = 0\]

or

\[T^2[T^{*2}T^2 - TT^*T] = 0,\]

Since \(N(T) \subset N(T^*), N(T) = N(T^2)\) and therefore

\[T[T^{*2}T^2 - TT^*T] = 0, \text{ or } [T^{*2}T - T^*TT^*]T^* = 0.\]

Again by \(N(T) \subset N(T^*),\) we get the desired conclusion.

Theorem 2.18. If an operator \(T\) of class \([2QN]\) is a 2-isometry, then it is an isometry.

Proof. By the definition of a 2-isometry,

\[(T^{*2}T^2)(T^*T) - 2(T^*T)^2 + T^*T = 0.\]

Since \(T\) is of class \([2QN]\)

\[T^{*2}(T^*T)T^2 - 2(T^*T)^2 + T^*T = 0,\]

that is

\[T^{*3}T^3 - 2(T^*T)^2 + T^*T = 0.\] (2.14)

Also

\[T^*[T^{*2}T^2 - 2T^*T + I]T = 0\]

i.e.

\[T^{*3}T^3 - 2T^{*2}T^2 + T^*T = 0.\] (2.15)

From (2.14) and (2.15) \(T^{*2}T^2 = (T^*T)^2\) and hence

\[(T^*T)^2 - 2(T^*T) + I = T^{*2}T^2 - 2T^*T + I = (T^*T - I)^2 = 0\]

or

\[T^*T = I.\]
Theorem 2.19. If an operator T is of class $[2QN] \cap [3QN]$ is an n-isometry, then T is an isometry.

Proof. By the definition of n-isometry,
$$T^n T^* T - \binom{n}{1}T^{n-1}T^{*n} + \cdots + (-1)^{n-2} \binom{n}{n-2}T^{*2}T^2 + (-1)^{n-1} \binom{n}{n-1}T^{*n}T + (-1)^n T^*T = 0.$$

Since T is of class $[2QN] \cap [3QN]$, we have by Proposition 2.6
$$T^{n+1} T^n + \cdots + (-1)^{n-2} \binom{n}{n-2}T^{*3}T^3 + (-1)^n \binom{n}{n-1}(T^*T)^2 + (-1)^n T^*T = 0. \quad (2.16)$$

Also
$$T^*[T^nT^n - \binom{n}{1}T^*n T^{n-1} + \cdots + (-1)^{n-1} \binom{n}{n-1}T^{*n}T + (-1)^n I]T = 0$$
i.e.
$$T^{n+1} T^n + \cdots + (-1)^{n-1} \binom{n}{n-1}T^{*2}T^2 + (-1)^n T^*T = 0 \quad (2.17)$$

From (2.16) and (2.17) $T^nT^2 = (T^*T)^2.$ Consequently $(T^*)^k T^k = (T^*T)^k$, $\forall \, k \in \mathbb{N}$, and hence
$$(T^*T)^n - \binom{n}{1}(T^*T)^{n-1} + \cdots + (-1)^{n-1} \binom{n}{n-1}(T^*T) + (-1)^n I = 0 = (I - T^*T)^n.$$

This completes the proof.

Definition 2.20. An operator $A \in \mathcal{L}(H)$ is said to be quasi-invertible if A has zero kernel and dense range.

Definition 2.21. ([18]) Two operators S and T in $\mathcal{L}(H)$ are quasi-similar if there are quasi-invertible operators A and B in $\mathcal{L}(H)$ which satisfy the equations
$$AS = TA \quad \text{and} \quad BT = SB.$$

If M is a closed subspace of $H, H = M \oplus M^\perp$. If T is in $\mathcal{L}(H)$, then T can be written as a 2×2 matrix with operators entries,
$$T = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix}$$
where $W \in \mathcal{L}(M), \, X \in \mathcal{L}(M^\perp, M), \, Y \in \mathcal{L}(M, M^\perp), \, \text{and} \, Z \in \mathcal{L}(M^\perp)$ (cf. Conway [6]).

Proposition 2.22. If S and T are quasi-similar n-power quasi-normal operators in $\mathcal{L}(H)$ such that $N(S) = N(T), N(T)$ and $N(S)$ are reducing respectively for T and S, then $S_1 = S|_{N(S)^\perp}$ and $T_1 = T|_{N(T)^\perp}$ are quasi-similar n-power quasi-normal operators.

Proof. Since S and T are quasi-similar, there exists quasi-invertible operators A and B such that $AS = TA$ and $SB = BT$. The $N(S)$ is invariant under both A and B. Thus the matrices of S,T,A and B with respect to decomposition $H = N(S) \oplus N(S)^\perp$ are
$$\begin{pmatrix} S_1 & O \\ O & O \end{pmatrix}, \begin{pmatrix} T_1 & O \\ O & O \end{pmatrix}, \begin{pmatrix} A_1 & O \\ A_2 & A_3 \end{pmatrix}, \begin{pmatrix} B_1 & O \\ B_2 & B_3 \end{pmatrix}$$
respectively. It is easy to verify that the ranges of A_1 and B_1 are dense in $N(S)^\perp$. We now show that $N(A_1) = N(B_1) = \{0\}$.

Suppose that $x \in N(A_1)$. Then $TA(x \oplus 0) = 0$. The equation $AS = TA$ implies that $x \in N(S_1)$. This implies that $x = 0$, and so $N(A_1) = \{0\}$. Likewise $N(B_1) = \{0\}$.
Therefore \(A_1 \) and \(B_1 \) are quasi-invertible operators on \(N(S)\perp \) and equations
\[\begin{align*}
A S &= T A \\
S B &= T B
\end{align*} \]
imply that \(A_1 S_1 = T_1 A_1 \) and \(S_1 B_1 = B_1 T_1 \). Hence \(S_1 \) and \(T_1 \) are quasi-similar. By a similar way as in [10, Proposition 2.1.(iv)] we can see that the operators \(S_1 \) and \(T_1 \) are \(n \)-power quasi-normal.

3. THE \((\mathbb{Z}^n)\) -CLASS OPERATORS

In this section we consider the class \((\mathbb{Z}_n^\alpha)\) of operators \(T \) satisfies
\[|T^nT^*T - T^*TT^n|^\alpha \leq c_\alpha^2 (T - \lambda I)^*n(T - \lambda I)^n, \]
for all \(\lambda \in \mathbb{C} \) and for a positive \(\alpha \). The motivation is due to S. Mecheri [13] who considered the class of operators \(T \) satisfying
\[|TT^* - T^*T|^\alpha \leq c_\alpha^2 (T - \lambda I)^*(T - \lambda I) \]
and A. Uchiyama and T. Yoshino [19] who discussed the class of operators \(T \) satisfying
\[|TT^* - T^*T|^\alpha \leq c_\alpha^2 (T - \lambda I)(T - \lambda I)^*. \]

Definition 3.1. For \(T \in \mathcal{L}(H) \) we say that \(T \) belongs to the class \((\mathbb{Z}_n^\alpha)\) for some \(\alpha \geq 1 \) if there is a positive number \(c_\alpha \) such that
\[|T^nT^*T - T^*TT^n|^\alpha \leq c_\alpha^2 (T - \lambda I)^*n(T - \lambda I)^n, \]
for all \(\lambda \in \mathbb{C} \), or equivalently, if there is a positive number \(c_\alpha \) such that
\[\|T^nT^*T - T^*TT^n\|_{\frac{\alpha}{2}} \leq c_\alpha \|T - \lambda I\|^n_x \]
for all \(x \in H \) and \(\lambda \in \mathbb{C} \). Also, let
\[\mathbb{Z}_n = \bigcup_{\alpha \geq 1} \mathbb{Z}_n^\alpha. \]

Remark. An operator \(T \) of class \([nQN]\), it is of class \((\mathbb{Z}_n)\).

In the following examples we give an example of an operator not in the classes \(\mathbb{Z}_n \), and an operator of these classes, which are not of class \([nQN]\).

Example 3.2. If \(f \) is a sequence of complex numbers, \(f = (f(0), f(1), f(2), \ldots)^T \).

The \(p \)-Cesàro operators \(C_p \) acting on the Hilbert space \(l^2 \) of square-summable complex sequences \(f \) is defined by
\[(C_p f)(k) = \frac{1}{(k + 1)^p} \sum_{i=1}^{k} f(i) \quad \text{for fixed real } p > 1 \quad \text{and } k = 0, 1, 2, \ldots. \]

These operators was studied extensively in [16] where it was shown, that these operators are bounded and
\[(C_p^* f)(k) = \sum_{i=k}^{\infty} \frac{1}{(i + 1)^p} f(i). \]

In matrix form, we have
\[\begin{pmatrix}
\frac{1}{2^p} & 0 & 0 & \ldots \\
\frac{1}{3^p} & \frac{1}{2^p} & 0 & \ldots \\
\frac{1}{4^p} & \frac{1}{3^p} & \frac{1}{2^p} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} \]
We consider the sequence \(f \) defined as follows
\[
f(0) = 1 \quad \text{and} \quad f(k) = \prod_{j=1}^{k} \frac{j^p}{(1 + j)^p - 1} \quad \text{for} \quad k \geq 1.
\]
In [16] it is verified that \(f \in l^2 \), is eigenvector for \(C_p \) associated with eigenvalue 1, so \(f \in N(C_p - I) \), but \(f \notin N(C_p^* - I) \). It follows that \(\| (C_p - I^p) f \| = 0 \).

On the other hand, we have
\[
(C_p^*C_p - C_p^*C_p) f = (C_p^* - I)C_p f \neq 0.
\]
Hence, \(C_p \) is a bounded operator but not of classes \(\mathbb{Z}^n \).

Example 3.3. Let \(T \) be a weighted shift operator on \(l^2 \) with weights \(\alpha_1 = 2, \alpha_k = 1 \) for all \(k \geq 2 \). That is
\[
T_{\alpha}(x_1, x_2, x_3, \ldots) = (0, \alpha_1 x_1, \alpha_2 x_2, \ldots) \quad \text{and} \quad T^*(x_1, x_2, \ldots) = (\alpha_1 x_2, \alpha_2 x_3, \ldots).
\]
A simple computation shows that
\[
(T^nT^n T - T^*TT^n)(x) = (0, 0, \ldots, 0, 6x_1, 0, 0, \ldots)
\]
with \(6x_1 \) at the \((n+1) \)th place.

Moreover
\[
(T^nT^n T - T^*TT^n)(x) = (-6x_{n+1}, 0, 0, \ldots) \quad \text{and} \quad |T^nT^n T - T^*TT^n|^2 x = (-36x_1, 0, 0, \ldots).
\]
Therefore \(T \) is not of class \([nQN] \) and however \(T \) is of class \(\mathbb{Z}_3^n \subseteq \mathbb{Z}^n \).

Lemma 3.4. For each \(\alpha, \beta \) such as \(1 \leq \alpha \leq \beta \), we have \(\mathbb{Z}_3^n \subseteq \mathbb{Z}_\beta^n \).

Proof.
\[
|T^nT^*T - T^*T^n+1|^{\beta} = |T^nT^n T - T^*T^n+1|^{\beta} \leq |T^nT^n T - T^*T^n+1|^{\beta-\alpha} |T^nT^*T - T^*T^n+1|^{\alpha}
\]
\[
\leq (2|T||n+2|^{\beta-\alpha} c_\alpha^n) (T - \lambda I)^{\alpha} (T - \lambda I)^{\alpha}
\]
where
\[
C_\beta^2 = (2|T||n+2|^{\beta-\alpha} c_\alpha^n).
\]
There exists an Hilbert space \(H^* \), \(H \subseteq H^* \), and an isometric *-homomorphism preserving order, i.e., for all \(T, S \in \mathcal{L}(H) \) and \(\lambda, \mu \in \mathbb{C} \), we have

Proposition 3.5. ([6],[13] Berberian technique) Let \(H \) be a complex Hilbert space.
Then there exists a Hilbert space \(H^* \supseteq H \) and a map
\[
\Phi : \mathcal{L}(H) \to \mathcal{L}(H^*) : T \mapsto T^*
\]
satisfying: \(\Phi \) is an *-isometric isomorphism preserving the order such that

1. \(\Phi(T^*) = \Phi(T)^* \).
2. \(\Phi(\lambda T + \mu S) = \lambda \Phi(T) + \mu \Phi(S) \).
3. \(\Phi(I_H) = I_{H^*} \).
4. \(\Phi(TS) = \Phi(T) \Phi(S) \).
5. \(\| \Phi(T) \| = \| T \| \).
6. \(\Phi(T) \leq \Phi(S) \) if \(T \leq S \).
7. \(\sigma(\Phi(T)) = \sigma(T), \quad \sigma_{\alpha}(\Phi(T)) = \sigma_{\alpha}(\Phi(T)) \).
8. If \(T \) is a positive operator, then \(\Phi(T^\alpha) = |\Phi(T)|^\alpha \) for all \(\alpha > 0 \).
Lemma 3.6. If an operator T^2 is of class $[nQI]$, then $\Phi(T^2)$ is of class $[nQI]$.

Lemma 3.7. If an operator T is of class $[nQI]$, then $\Phi(T)$ is of class $[nQI]$.

Proof. Since T is of class Z^n, there exists $\alpha \geq 1$ and $c_{\alpha} > 0$ such that

$$|T^nT^*T - T^*T^{n+1}|^\alpha \leq c_{\alpha}^2(T - \lambda)^n(T - \lambda)^{n+1}$$

for all $\lambda \in \mathbb{C}$.

It follows from the properties of the map Φ that

$$\Phi([T^nT^*T - T^*T^{n+1}]) \leq \Phi(c_{\alpha}^2(T - \lambda)^n(T - \lambda)^{n+1})$$

for all $\lambda \in \mathbb{C}$.

By the condition 8. above we have

$$\Phi([T^nT^*T - T^*T^{n+1}]) = |\Phi([T^nT^*T - T^*T^{n+1}])|^\alpha$$

Therefore

$$|\Phi(T)|^n|\Phi(T)| - \Phi(T) \Phi(T)^{n+1}| \leq \Phi(c_{\alpha}^2(T - \lambda)^n(T - \lambda)^{n+1})$$

for all $\lambda \in \mathbb{C}$.

Hence $\Phi(T)$ is of class Z^n.

Proposition 3.8. Let T be a class Z^n operator and assume that there exists a subspace M that reduces T, then $T|\bar{M}$ is of class Z^n operator.

Proof. Since T is of class Z^n, there exists an integer $p \geq 1$ and $c_{p} > 0$ such that

$$||T^nT^*T - T^*T^{n+1}||^p \leq c_{2p}||T - \lambda I||^n x||, \text{ for all } x \in H, \text{ for all } \lambda \in \mathbb{C}.$$

If M reduces T, T can be written respect to the composition $H = M \oplus M^\perp$ as follows:

$$T = \begin{pmatrix} A & O \\ O & B \end{pmatrix},$$

By a simple calculation we get

$$T^nT^*T - T^*T^{n+1} = \begin{pmatrix} A^nA^*A - A^*A^{n+1} & O \\ O & B^nB^*B - B^*B^{n+1} \end{pmatrix}$$

By the uniqueness of the square root, we obtain

$$|T^nT^*T - T^*T^{n+1}| = \begin{pmatrix} |A^nA^*A - A^*A^{n+1}| & O \\ O & |B^nB^*B - B^*B^{n+1}| \end{pmatrix}.$$

Now by iteration to the order 2^p, it results that

$$|T^nT^*T - T^*T^{n+1}|^{2^p-1} = \begin{pmatrix} |A^nA^*A - A^*A^{n+1}|^{2^p-1} & 0 \\ 0 & |B^nB^*B - B^*B^{n+1}|^{2^p-1} \end{pmatrix}.$$

Therefore for all $x \in M$, we have

$$||T^nT^*T - T^*T^{n+1}||^{2^p-1} \leq c_{2p}||T - \lambda I||^n x|| \leq (A - \lambda I)^n x||.$$

Hence A is of class $Z^{n}_{2^p} \subset Z^n$.

Theorem 3.9. Let T be of class Z^n.

1. If $\lambda \in \sigma_p(T)$, $\lambda \neq 0$, then $\lambda \in \sigma_p(T^*)$, furthermore if $\lambda \neq \mu$, then E_{λ} (the proper subspace associated with λ) is orthogonal to E_{μ}.

2. If $\lambda \in \sigma_q(T)$, then $\lambda \in \sigma_q(T^*)$.

3. $TT^*T - T^*T^2$ is not invertible.

Proof.
ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE

(1) If $T \in \mathbb{Z}_1$, then $T \in \mathbb{Z}_1^\alpha$ for some $\alpha \geq 1$ and there exists a positive constant c_α such that

$$|TT^* T - T^* T^2|^\alpha \leq c_\alpha (T - \lambda I)^*(T - \lambda I)$$

for all $\lambda \in \mathbb{C}$.

As $Tx = \lambda x$ implies $|TT^* T - T^* T^2|^2 x = 0$ and $(TT^* - T^* T)x = 0$ and hence

$$\| (T - \lambda)^* x \| = \| (T - \lambda) x \|$$

$$\lambda \langle x | y \rangle = \langle \lambda x | y \rangle = \langle Tx | y \rangle = \langle x | T^* y \rangle = \langle x | \overline{\mu} y \rangle = \mu \langle x | y \rangle.$$

Hence

$$\langle x | y \rangle = 0.$$

(2) Let $\lambda \in \sigma_a(T)$ from the condition 7. above, we have

$$\sigma_a(T) = \sigma_a(\Phi(T)) = \sigma_p(\phi(T)).$$

Therefore $\lambda \in \sigma_p(\phi(T))$. By applying Lemma 3.7 and the above condition 1., we get

$$\lambda \in \sigma_p(\Phi(T)^*).$$

(3) Let $T \in \mathbb{Z}_1$. then there exists an integer $p \geq 1$ and $c_p > 0$ such that

$$\| TT^* T - T^* T^2 \|^2 \leq c_p^2 \| (T - \lambda I) x \|^2$$

for all $x \in H$ and for all $\lambda \in \mathbb{C}$.

It is know that $\sigma_a(T) \neq \emptyset$. If $\lambda \in \sigma_a(T)$, then there exists a normed sequence (x_m) in H such that $\| (T - \lambda I) x_m \| \rightarrow 0$ as $m \rightarrow \infty$. Then

$$(TT^* T - T^* T^2) x_m \rightarrow 0$$

and so, $(TT^* T - T^* T^2)$ is not invertible.

Acknowledgments. The author would like to express his cordial gratitude to the referee for valuable advice and suggestions.

References

Mathematics Department, College of Science. Aljouf University Aljouf 2014. Saudi Arabia

E-mail address: sidahmed@ju.edu.sa