A QUADRATIC TYPE FUNCTIONAL EQUATION

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

GHADIR SADEGHI

Abstract. In this paper, the solution and the Hyers–Ulam stability of the following quadratic type functional equation

\[\sum_{i=1}^{k} \sum_{\varepsilon_i \in \{-1,1\}} f(x_1 + \varepsilon_i x_i) = 2(k-1)f(x_1) + 2 \sum_{i=2}^{k} f(x_i) \]

is investigated.

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: “When is it true that a function which approximately satisfies a functional equation \(E \) must be close to an exact solution of \(E \)’?” If there exists an affirmative answer, we say that the equation \(E \) is stable [9]. During the last decades several stability problems for various functional equations have been investigated by numerous mathematicians. We refer the reader to the survey articles [10, 9, 21] and monographs [11, 12, 8] and references therein.

Let \(X \) and \(Y \) be normed spaces. A function \(f: X \to Y \) satisfying the functional equation

\[f(x + y) + f(x - y) = 2f(x) + 2f(y) \quad (x, y \in X) \quad (1.1) \]

is called the quadratic functional equation. It is well known that a function \(f \) between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function \(B \) such that \(f(x) = B(x, x) \) for all \(x \in X \); see [9]. The bi-additive function \(B \) is given by

\[B(x, x) = \frac{1}{4} (f(x + y) - f(x - y)). \]

The Hyers–Ulam stability of the quadratic equation (1.1) was proved by Skof [22]. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain \(X \) is replaced by an abelian group. Furthermore, Czerwik [7] deal with stability problem of the quadratic functional equation (1.1) in the spirit of Hyers–Ulam–
Rassias. Also, Jung [13] proved the stability of (1.1) on a restricted domain. For more information on the stability of the quadratic equation, we refer the reader to [2, 3, 16, 4, 14].

Theorem 1.1. (Czerwik) Let \(\varepsilon \geq 0 \) be fixed. If a mapping \(f : \mathcal{X} \rightarrow \mathcal{Y} \) satisfies the inequality
\[
\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \leq \varepsilon \quad (x \in \mathcal{X}) \tag{1.2}
\]
then there exists a unique quadratic mapping \(Q : \mathcal{X} \rightarrow \mathcal{Y} \) such that
\[
\|f(x) - Q(x)\| \leq \frac{1}{2} \varepsilon \quad (x \in \mathcal{X}).
\]
Moreover, if \(f \) is measurable or if \(f(tx) \) is continuous in \(t \) for each fixed \(x \in \mathcal{X} \), then \(Q(tx) = t^2Q(x) \) for all \(x \in \mathcal{X} \) and \(t \in \mathbb{R} \).

The Hyers–Ulam stability of equation (1.1) on a certain restricted domain was investigated by Jung [13] in the following theorem,

Theorem 1.2. (Jung) Let \(d > 0 \) and \(\varepsilon \geq 0 \) be given. Assume that a mapping \(f : \mathcal{X} \rightarrow \mathcal{Y} \) satisfies the inequality (1.2) for all \(x, y \in \mathcal{X} \) with \(\|x\| + \|y\| \geq d \). Then there exists a unique quadratic mapping \(Q : \mathcal{X} \rightarrow \mathcal{Y} \) such that
\[
\|f(x) - Q(x)\| \leq \frac{7}{2} \varepsilon \quad (x \in \mathcal{X}). \tag{1.3}
\]
If, moreover, \(f \) is measurable or \(f(tx) \) is continuous in \(t \) for each fixed \(x \in \mathcal{X} \) then \(Q(tx) = t^2Q(x) \) for all \(x \in \mathcal{X} \) and \(t \in \mathbb{R} \).

The quadratic functional equation was used to characterize the inner product spaces [1]. A square norm on an inner product space satisfies the important parallelogram equality
\[
\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).
\]
It was shown by Moslehian and Rassias [19] that a normed space \((\mathcal{X}, \|\cdot\|)\) is an inner product space if and only if for any finite set of vectors \(x_1, x_2, \ldots, x_k \in \mathcal{X}\),
\[
\sum_{\varepsilon_j \in \{-1,1\}} \left\| x_1 + \sum_{i=2}^{k} \varepsilon_j x_i \right\|^2 = \sum_{\varepsilon_j \in \{-1,1\}} \left(\|x_1\| + \sum_{i=2}^{k} \varepsilon_j \|x_i\| \right)^2. \tag{1.4}
\]
Motivated by (1.4), we introduce the following functional equation deriving from the quadratic function
\[
\sum_{i=2}^{k} \sum_{\varepsilon_j \in \{-1,1\}} f(x_1 + \varepsilon_j x_i) = 2(k-1)f(x_1) + 2\sum_{i=2}^{k} f(x_i), \tag{1.5}
\]
where \(k \geq 2 \) is a fixed integer. It is easy to see that the function \(f(x) = x^2 \) is a solution of functional equation (1.5).

2. **Solution of the equation (1.5)**

Theorem 2.1. A mapping \(f : \mathcal{X} \rightarrow \mathcal{Y} \) satisfies the equation (1.5) for all \(x_1, x_2, \ldots, x_k \in \mathcal{X} \) if and only if \(f \) is quadratic.
Proof. If we replace \(x_1, x_2, \ldots, x_k \) in \([1.5]\) by 0, then we get \(f(0) = 0 \). Putting \(x_3 = x_4 = \cdots = x_k = 0 \) in the equation \((1.5)\) we see that
\[
f(x_1 - x_2) + f(x_1 + x_2) + 2(k - 2)f(x_1) = 2(k - 1)f(x_1) + 2f(x_2).
\]
Hence \(f(x_1 - x_2) + f(x_1 + x_2) = 2f(x_1) + 2f(x_2) \). The converse is trivial.

Remark. We can prove the theorem above on the punching space \(X - \{0\} \). If we consider \(x_2 = x_3 = \cdots = x_k \), then we observe that
\[
\sum_{i=2}^{k} \sum_{\varepsilon_j \in \{-1, 1\}} f(x_1 + \varepsilon_j x_2) = 2(k - 1)f(x_1) + 2 \sum_{i=2}^{k} f(x_i),
\]
whence
\[
(k - 1)(f(x_1 - x_2) + f(x_1 + x_2)) = 2(k - 1)f(x_1) + 2(k - 1)f(x_2).
\]
Hence \(f \) is quadratic.

3. Stability Results

Throughout this section, let \(X \) and \(Y \) be normed and Banach spaces also, we prove the Hyers–Ulam stability of equation \((1.5)\). From now on, we use the following abbreviation
\[
\mathcal{D} f(x_1, x_2, \ldots, x_k) = \sum_{i=2}^{k} \sum_{\varepsilon_j \in \{-1, 1\}} f(x_1 + \varepsilon_j x_i) - 2(k-1)f(x_1) - 2 \sum_{i=2}^{k} f(x_i).
\] (3.1)

Theorem 3.1. Let \(\varepsilon \geq 0 \) be fixed. If a mapping \(f : X \to Y \) with \(f(0) = 0 \) satisfies
\[
\|\mathcal{D} f(x_1, x_2, \ldots, x_k)\| \leq \varepsilon
\] (3.2)
for all \(x_1, x_2, \ldots, x_k \in X \), then there exists a unique quadratic mapping \(Q : X \to Y \) such that
\[
\|f(x) - Q(x)\| \leq \frac{1}{2} \varepsilon.
\]
Moreover, if \(f \) is measurable or if \(f(tx) \) is continuous in \(t \) for each fixed \(x \in X \), then \(Q(tx) = t^2 Q(tx) \) for all \(x \in X \) and \(t \in \mathbb{R} \).

Proof. It is enough to put \(x_3 = x_4 = \cdots = x_k = 0 \) in \((3.2)\) and use Theorem 1.1.

By using an idea from the paper [13], we will prove the Hyers–Ulam stability of equation \((1.5)\) on a restricted domain.

Theorem 3.2. Let \(d > 0 \) and \(\varepsilon \geq 0 \) be given. Suppose that a mapping \(f : X \to Y \) satisfies the inequality \((3.2)\) for all \(x_1, x_2, \ldots, x_k \in X \) with \(\|x_1\| + \|x_2\| + \cdots + \|x_k\| \geq d \). Then there exists a unique quadratic mapping \(Q : X \to Y \) such that
\[
\|f(x) - Q(x)\| \leq \frac{3 + 2k}{2} \varepsilon
\] (3.3)
for all \(x \in X \). Moreover, if \(f \) is measurable or if \(f(tx) \) is continuous in \(t \) for each fixed \(x \in X \), then \(Q(tx) = t^2 Q(tx) \) for all \(x \in X \) and \(t \in \mathbb{R} \).
Proof. Assume \(\|x_1\| + \|x_2\| + \cdots + \|x_k\| < d \). If \(x_1 = x_2 = \cdots = x_k = 0 \), then we chose a \(t \in \mathcal{X} \) with \(\|t\| = d \). Otherwise, let \(t = (1 + \frac{d}{\|x_{i_0}\|})x_{i_0} \), where \(\|x_{i_0}\| = \max\{\|x_j\| : 1 \leq j \leq k\} \). Clearly, we see that

\[
\begin{align*}
\|x_1 - t\| + \|x_2 + t\| + \cdots + \|x_k + t\| & \geq d \\
\|x_1 + t\| + \|x_2 + t\| + \cdots + \|x_k + t\| & \geq d \\
\|x_1\| + \|x_2 + 2t\| + \cdots + \|x_k + 2t\| & \geq d \\
\|x_2 + t\| + \|x_3 + t\| + \cdots + \|x_k + t\| + \|t\| & \geq d \\
\|x_1\| + \|t\| & \geq d,
\end{align*}
\]

since \(\|x_j + t\| \geq d \) and \(\|x_j + 2t\| \geq d \), for \(1 \leq j \leq k \).

From (3.2) and (3.4) and the relations

\[
f(x_1 + x_2) + f(x_1 - x_2) - 2f(x_1) - 2f(x_2) = f(x_1 + x_2) + f(x_1 - x_2 - 2t) - 2f(x_1 - t) - 2f(x_2 + t) + f(x_1 + x_2 + 2t) + f(x_1 - x_2 - 2t) - 2f(x_1 - t) - 2f(x_2 + t) - 2f(x_2 + 2t) - 2f(x_2 + 4(t + 2f(x_2 + t) + 4f(t)) + 2f(x_1 + x_2 + 2t) - 2f(x_1 - x_2 - 2t) - 2f(x_1 - t) - 4f(x_1) - 4f(t)
\]

we get

\[
\|Df(x_1, x_2, \cdots, x_k)\| \leq \left\| \sum_{i=2}^{k} \sum_{\epsilon_j \in \{-1, 1\}} f(\alpha_1 + \epsilon_j \alpha_i) - 2(k - 1)f(\alpha_1) - 2 \sum_{i=2}^{k} f(\alpha_i) \right\| + \left\| \sum_{i=2}^{k} \sum_{\epsilon_j \in \{-1, 1\}} f(\beta_1 + \epsilon_j \beta_i) - 2(k - 1)f(\beta_1) - f(\beta_i) \right\| + \left\| \sum_{i=2}^{k} \sum_{\epsilon_j \in \{-1, 1\}} f(\gamma_1 + \epsilon_j \gamma_i) - 2(k - 1)f(\gamma_1) - 2 \sum_{i=2}^{k} f(\gamma_i) \right\| + \left\| \sum_{i=2}^{k} \sum_{\epsilon_j \in \{-1, 1\}} f(\theta_1 + \epsilon_j \theta_i) - 2(k - 1)f(\theta_1) - 2 \sum_{i=2}^{k} f(\theta_i) \right\| + \left\| \sum_{i=2}^{k} \sum_{\epsilon_j \in \{-1, 1\}} f(\eta_1 + \epsilon_j \eta_i) - 2(k - 1)f(\eta_1) - 2 \sum_{i=2}^{k} f(\eta_i) \right\|,
\]

where

\[
\begin{align*}
\alpha_1 &= x_1 - t, & \alpha_i &= x_i + t, & 2 \leq i \leq k \\
\beta_1 &= x_1 + t, & \beta_i &= x_i + t, & 2 \leq i \leq k \\
\gamma_1 &= t, & \gamma_i &= x_i + t, & 2 \leq i \leq k \\
\theta_1 &= x_1, & \theta_i &= x_i + 2t, & 2 \leq i \leq k \\
\eta_1 &= x_1, & \eta_i &= x_i + t, & 2 \leq i \leq k.
\end{align*}
\]
Theorem 4.1. Let Moslehian et al. [18].

Hence we have
\[
\|Df(x_1, x_2, \cdots, x_k)\| \leq \|Df(\alpha_1, \alpha_2, \cdots, \alpha_k)\| + \|Df(\beta_1, \beta_2, \cdots, \beta_k)\| + 2\|Df(\gamma_1, \gamma_2, \cdots, \gamma_k)\| + \|Df(\theta_1, \theta_2, \cdots, \theta_k)\| + 2(k - 1)\|Df(\eta_1, \eta_2, \cdots, \eta_k)\|
\]
\[
\leq (3 + 2k)\varepsilon. \tag{3.5}
\]

Obviously, inequality (3.2) holds for all $x, y \in X$. According to (3.5) and Theorem 3.1, there exists a unique quadratic mapping $Q : X \rightarrow Y$ which satisfies the inequality (3.3) for all $x_1, x_2, \cdots, x_k \in X$.

Now we study asymptotic behavior of function equation (1.5).

Theorem 3.3. Suppose that $f : X \rightarrow Y$ is a mapping. Then f is quadratic if and only if for $k \in \mathbb{N}$ ($k \geq 2$)
\[
\|Df(x_1, x_2, \cdots, x_k)\| \rightarrow 0 \tag{3.6}
\]
as $\|x_1\| + \|x_2\| + \cdots + \|x_k\| \rightarrow \infty$.

Proof. If f is quadratic then (3.6) evidently holds. Conversely, by using the limits (3.6) we can find for every $n \in \mathbb{N}$ a sequence ε_n such that $\|Df(x_1, x_2, \cdots, x_k)\| \leq \frac{1}{n}$ for all $x_1, x_2, \cdots, x_k \in X$ with $\|x_1\| + \|x_2\| + \cdots + \|x_k\| \geq \varepsilon_n$.

By Theorem 3.2 for every $n \in \mathbb{N}$ there exists a unique quadratic mapping Q_n such that
\[
\|f(x) - Q_n(x)\| \leq \frac{3 + 2k}{2n} \tag{3.7}
\]
for all $x \in X$. Since $\|f(x) - Q_1(x)\| \leq \frac{3 + 2k}{2n}$ and $\|f(x) - Q_n(x)\| \leq \frac{3 + 2k}{2n} \leq \frac{3 + 2k}{2}$, by the uniqueness of Q_1 we conclude that $Q_n = Q_1$ for all $n \in \mathbb{N}$. Now, by tending n to the infinity in (3.7) we deduce that $f = Q_1$. Therefore f is quadratic. \qed

4. Stability on bounded domains

Throughout this section, we denote by $B_r(0)$ the closed ball of radius r around the origin and $B_r = B_r(0) - \{0\}$. In this section we used some ideas from the paper’s Moslehian et al. [18].

Theorem 4.1. Let X and Y be normed and Banach spaces $p > 2, r > 0, \varphi : X^k \rightarrow [0, \infty) (k \geq 2)$ be a function such that $\varphi(\frac{x_1}{2}, \frac{x_2}{2}, \cdots, \frac{x_k}{2}) \leq \frac{1}{2^p} \varphi(x_1, x_2, \cdots, x_k)$ for all $x_1, x_2, \cdots, x_k \in B_r$. Suppose that $f : X \rightarrow Y$ is a mapping satisfying $f(0) = 0$ and
\[
\|Df(x_1, x_2, \cdots, x_k)\| \leq \varphi(x_1, x_2, \cdots, x_k) \tag{4.1}
\]
for all $x_1, x_2, \cdots, x_k \in B_r$ with $x_i \pm x_j \in B_r$ for $1 \leq i, j \leq k$. Then there exists a unique quadratic mapping $Q : X \rightarrow Y$ such that
\[
\|f(x) - Q(x)\| \leq \frac{1}{(2^p - 4)(k - 1)} \varphi(x, x, \cdots, x), \tag{4.2}
\]
where $x \in B_r$.

Proof. Let $x_1, x_2, \cdots, x_k \in B_r$. If we consider $x_2 = x_3 = \cdots = x_k$ in (4.1), then we see that
\[
\|f(x_1 + x_2) + f(x_1 - x_2) - 2f(x_1) - 2f(x_2)\| \leq \frac{1}{k - 1} \varphi(x_1, x_2, \cdots, x_2). \tag{4.3}
\]
Replacing \(x_1, x_2 \) in \((4.3)\) by \(\frac{x}{2} \), we get
\[
\| f(x) - 4f\left(\frac{x}{2}\right) \| \leq \frac{1}{k-1} \varphi \left(\frac{x}{2}, \frac{x}{2}, \ldots, \frac{x}{2} \right).
\] (4.4)

Replacing \(x \) by \(\frac{x}{2^r} \) in \(B_r \) and multiplying with \(4^n \) in \((4.4)\), we obtain
\[
\|4^n f\left(\frac{x}{2^n}\right) - 4^{n+1} f\left(\frac{x}{2^{n+1}}\right)\| \leq \frac{4^n}{k-1} \varphi \left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}, \ldots, \frac{x}{2^{n+1}} \right).
\] (4.5)

It follows from \((4.5)\) that
\[
\|4^n f\left(\frac{x}{2^n}\right) - 4^{n+m} f\left(\frac{x}{2^{n+m}}\right)\| \leq \frac{1}{k-1} \sum_{i=1}^{m} 4^{n+i-1} \varphi \left(\frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \ldots, \frac{x}{2^{n+i}} \right)
\]
\[
\leq \frac{2^{2(n-1)}}{2^{m(k-1)}} \varphi(x, x, \ldots, x) \sum_{i=1}^{m} \frac{1}{2^{(p-1)i}}.
\] (4.6)

It follows that \(\{4^n f\left(\frac{x}{2^n}\right)\} \) is Cauchy and so is convergent. Therefore we see that a mapping
\[
\hat{Q}(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) \quad (x \in B_r),
\]
satisfies
\[
\| f(x) - \hat{Q}(x) \| \leq \frac{1}{(2^p - 4)(k-1)} \varphi(x, x, \ldots, x),
\]
and \(\hat{Q}(0) = 0 \), when taking the limit \(m \to \infty \) in \((4.6)\) with \(n = 0 \).

Next fix \(x \in B_r \). Because of \(\frac{x}{2} \in B_r \), we have
\[
4\hat{Q}\left(\frac{x}{2}\right) = \lim_{n \to \infty} 4^{n+1} f\left(\frac{x}{2^{n+1}}\right) = \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) = \hat{Q}(x).
\]

Therefore \(4^{n+m} \hat{Q}\left(\frac{x}{2^{n+m}}\right) = \hat{Q}(x) \) and so the mapping \(Q : X \to Y \) given by \(Q(x) := 4^n \hat{Q}\left(\frac{x}{2^n}\right) \), where \(n \) is least non-negative integer such that \(\frac{x}{2^n} \in B_r \) is well-defined.

It is easy to see that \(Q(x) = \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) \quad (x \in X) \) and \(Q|_{B_r(0)} = \hat{Q} \).

Now let \(x, y \in X \). There is a large enough \(n \) such that \(\frac{x}{2^n}, \frac{y}{2^n}, \frac{x+y}{2^n}, \frac{x-y}{2^n} \in B_r(0) \). Put \(x_1 = \frac{x}{2^n} \) and \(x_2 = \frac{y}{2^n} \) in \((4.3)\) and multiplying both sides with \(4^n \) to obtain
\[
\|4^n f\left(\frac{x+y}{n}\right) + 4^n f\left(\frac{x-y}{2^n}\right) - 4^n 2f\left(\frac{x}{2^n}\right) - 4^n 2f\left(\frac{y}{2^n}\right)\| \leq \frac{4^n}{k-1} \varphi \left(\frac{x}{2^n}, \frac{y}{2^n}, \ldots, \frac{y}{2^n} \right)
\]
\[
\leq \frac{4^n}{2^{np}(k-1)} \varphi(x, y, y, \ldots, y).
\]

whence, by taking the limit as \(n \to \infty \), we get \(Q(x+y) + Q(x-y) = 2Q(x) + 2Q(y) \). Hence \(Q \) is quadratic. Uniqueness of \(Q \) can be proved by using the strategy used in the proof of Theorem \(3.2 \).

\[\square\]

Corollary 4.2. Let \(X \) and \(Y \) be normed and Banach spaces \(p > 2, r > 0, \theta > 0 \). Suppose that \(f : X \to Y \) is a mapping satisfying \(f(0) = 0 \) and
\[
\|D f(x_1, x_2, \ldots, x_k)\| \leq \theta \|x_1\|^\frac{p}{2} \|x_2\|^\frac{p}{2} \cdots \|x_k\|^\frac{p}{2}
\] (4.7)
for all \(x_1, x_2, \ldots, x_k \in B_r \) with \(x_i \pm x_j \in B_r \) for \(2 \leq i, j \leq k \). Then there exists a unique quadratic mapping \(Q : X \to Y \) such that
\[
\| f(x) - Q(x) \| \leq \frac{\theta p}{(2^p - 4)(k-1)},
\] (4.8)

where \(x \in B_r \).
Proof. Apply Theorem 4.1 with \(\varphi(x_1, x_2, \ldots, x_k) = \theta \|x_1\|^p \|x_2\|^p \cdots \|x_k\|^p. \)

References

Ghadir Sadeghi
Department of Mathematics and computer sciences, Sabzevar Tarbiat Moallem University, P.O. Box 397, Sabzevar, Iran
E-mail address: ghadir54@yahoo.com