On the local properties of factored Fourier series *

Hüseyin Bor

Abstract

In the present paper, a theorem on local property of \(|\tilde{N}, p_n, \theta_n|_k\) summability of factored Fourier series which generalizes a result of Bor [3] has been proved.

1 Introduction

Let \(\sum a_n\) be a given infinite series with partial sums \((s_n)\). We denote by \(t_n\) the \(n\)-th \((C,1)\) mean of the sequence \((na_n)\). A series \(\sum a_n\) is said to be summable \(|C,1|_k, k \geq 1\), if (see [6],[8])

\[
\sum_{n=1}^{\infty} \frac{1}{n} |t_n|^k < \infty. \tag{1.1}
\]

Let \((p_n)\) be a sequence of positive numbers such that

\[
P_n = \sum_{v=0}^{n} p_v \to \infty \text{ as } n \to \infty, \quad (P_{-i} = p_{-i} = 0, i \geq 1). \tag{1.2}
\]

The sequence-to-sequence transformation

\[
\sigma_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v \tag{1.3}
\]

defines the sequence \((\sigma_n)\) of the Riesz mean or simply the \((\tilde{N}, p_n)\) mean of the sequence \((s_n)\), generated by the sequence of coefficients \((p_n)\) (see [7]). The series \(\sum a_n\) is said to be summable \(|\tilde{N}, p_n|_k, k \geq 1\), if (see [2])

\[
\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |\Delta \sigma_{n-1}|^k < \infty, \tag{1.4}
\]

where

\[
\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \geq 1. \tag{1.5}
\]

*Mathematics Subject Classifications: 40G99, 42A24, 42B24.

Key words: Absolute summability, infinite series, local property, Fourier series.

©2009 Universiteti i Prištines, Prištine, Kosovë.
In the special case $p_n = 1$ for all values of n, $|\hat{N}, p_n|_k$ summability is the same as $|C, 1|_k$ summability. Also, if we take $k = 1$ and $p_n = 1/(n + 1)$, then summability $|\hat{N}, p_n|_k$ is equivalent to the summability $|R, \log n, 1|$. Let (θ_n) be any sequence of positive constants. The series $\sum a_n$ is said to be summable $|\hat{N}, p_n, \theta_n|_k$, $k \geq 1$, if (see [12])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |\Delta \sigma_{n-1}|^k < \infty.$$ \hfill (1.6)

If we take $\theta_n = \frac{p_n}{p_{n+1}}$, then $|\hat{N}, p_n, \theta_n|_k$ summability reduces to $|\hat{N}, p_n|_k$ summability. Also, if we take $\theta_n = n$ and $p_n = 1$ for all values of n, then we get $|C, 1|_k$ summability. Furthermore, if we take $\theta_n = n$, then $|\hat{N}, p_n, \theta_n|_k$ summability reduces to $|R, p_n|_k$ (see [4]) summability. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n \geq 0$ for every positive integer n, where $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n)$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

Let $f(t)$ be a periodic function with period 2π, and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0$$ \hfill (1.7)

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$ \hfill (1.8)

\section{Known result}

Mohanty [11] has demonstrated that the summability $|R, \log n, 1|$ of

$$\sum A_n(t)/\log(n + 1),$$ \hfill (2.1)

at $t = x$, is a local property of the generating function of $\sum A_n(t)$. Later on Matsumoto [9] improved this result by replacing the series (2.1) by

$$\sum A_n(t)/\log \log(n + 1)^{1+\epsilon}, \epsilon > 0.$$ \hfill (2.2)

Generalizing the above result Bhatt [1] proved the following theorem.

\textbf{Theorem A.} If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum A_n(t)\lambda_n \log n$ at a point can be ensured by a local property.

Also, Mishra [10] has proved the following most general theorem on this matter.

\textbf{Theorem B.} If (p_n) is a sequence such that

$$P_n = O(np_n)$$ \hfill (2.3)
\[P_n \Delta p_n = O(p_n p_{n+1}), \quad (2.4) \]

then the summability \(|\bar{N}, p_n| \) of the series

\[\sum_{n=1}^{\infty} A_n(t) \lambda_n p_n / np_n \quad (2.5) \]

at a point can be ensured by local property, where \((\lambda_n) \) is as in Theorem A.

On the other hand Bor [3] has generalized Theorem B for \(|\bar{N}, p_n|_k \) summability in the following form.

Theorem C. Let \(k \geq 1 \) and \((p_n) \) be a sequence such that the conditions (2.3) and (2.4) of Theorem B are satisfied. Then the summability \(|\bar{N}, p_n|_k \) of the series (2.5) at a point can be ensured by local property, where \((\lambda_n) \) is as in Theorem A.

3 Main result

The aim of this paper is to generalize Theorem C for \(|\bar{N}, p_n, \theta_n|_k \) summability. We shall prove the following theorem.

Theorem. Let \(k \geq 1 \) and \((p_n) \) be a sequence such that the conditions (2.3)-(2.4) of Theorem B are satisfied. If \((\theta_n) \) is any sequence of positive constants such that

\[\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{v} (\lambda_v)^k = O(1) \quad (3.1) \]

\[\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \Delta \lambda_v = O(1) \quad (3.2) \]

\[\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{v} (\lambda_{v+1})^k = O(1) \quad (3.3) \]

and

\[\sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O \left\{ \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{P_v} \right\} \quad (3.4) \]

then the summability \(|\bar{N}, p_n, \theta_n|_k \) of the series (2.5) at a point can be ensured by local property, where \((\lambda_n) \) is as in Theorem A.

It should be noted that if we take \(\theta_n = \frac{p_n}{P_n} \), then we get Theorem C. In this case the conditions (3.1)-(3.3) are obvious and the condition (3.4) reduces to

\[\sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} = O \left(\frac{1}{P_v} \right), \]
which always holds.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([10]). If the sequence \((p_n)\) is such that the conditions (2.3) and (2.4) of Theorem B are satisfied, then
\[
\Delta(P_n/np_n) = O(1/n). \tag{3.5}
\]

Lemma 2 ([5]). If \((\lambda_n)\) is a convex sequence such that \(\sum n^{-1}\lambda_n\) is convergent, then \((\lambda_n)\) is non-negative and decreasing, and \(n\Delta\lambda_n \to 0\) as \(n \to \infty\).

Lemma 3. Let \(k \geq 1\). If \((s_n)\) is bounded and all conditions of the Theorem are satisfied, then the series
\[
\sum_{n=1}^{\infty} A_n\lambda_n P_n/np_n \tag{3.6}
\]
is summable \(|\bar{N}, p_n, \theta_n |_k\), where \((\lambda_n)\) is as in Theorem A.

Remark. Since \((\lambda_n)\) is a convex sequence, therefore \((\lambda_n)^k\) is also convex sequence and \(\sum (1/n)(\lambda_n)^k < \infty\).

Proof of Lemma 3. Let \((T_n)\) denotes the \((\bar{N}, p_n)\) mean of the series (3.6). Then, by definition, we have
\[
T_n = \frac{1}{P_n} \sum_{v=0}^{n} P_v \sum_{r=0}^{v} a_r \lambda_r P_r/np_r = \frac{1}{P_n} \sum_{v=0}^{n} (P_n - P_{v-1})a_v \lambda_v P_v/np_v.
\]

Then
\[
T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_v \frac{a_v \lambda_v}{vp_v}, \quad n \geq 1, \quad (P_{-1} = 0).
\]

By Abel’s transformation, we have
\[
T_n - T_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} p_v P_v s_v \lambda_v \frac{1}{vp_v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v s_v P_v \Delta \lambda_v \frac{1}{vp_v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v P_{v+1} \Delta(P_v/np_v)s_v + s_{n} \lambda_n \frac{1}{n}
\]
\[
= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad \text{say}.
\]

To prove the lemma, by Minkowski’s inequality, it is sufficient to show that
\[
\sum_{n=1}^{\infty} \theta_n^{k-1} |T_{n,r}|^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4. \tag{3.7}
\]
Now, applying Hölder’s inequality, we have that

\[
\sum_{n=2}^{m+1} g_n^{k-1} | T_{n,1} |^k \leq \sum_{n=2}^{m+1} g_n^{k-1} \left(\frac{p_n}{p_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \theta_v | s_v |^k \left(\frac{\lambda_v P_v}{v p_v} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \theta_v \left(\frac{P_v}{v^k} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} \times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^k \left(\frac{P_v}{v^k} \right)^{k-1} \frac{1}{v^k} \sum_{n=v+1}^{m+1} \left(\theta_v \frac{p_n}{P_v} \right)^{k-1} \frac{p_n}{P_n P_{n-1}}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^k \left(\frac{P_v}{v^k} \right)^{k-1} \frac{1}{v^k} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{v} (\lambda_v)^k = O(1) \quad \text{as} \quad m \to \infty,
\]

by virtue of the hypotheses of the Theorem. Since

\[
\sum_{v=1}^{n-1} P_v \Delta \lambda_v \leq P_{n-1} \sum_{v=1}^{n-1} \Delta \lambda_v \Rightarrow \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v \leq \sum_{v=1}^{n-1} \Delta \lambda_v = O(1),
\]

by Lemma 2, we have that

\[
\sum_{n=2}^{m+1} g_n^{k-1} | T_{n,2} |^k \leq \sum_{n=2}^{m+1} g_n^{k-1} \left(\frac{p_n}{p_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{v p_v} \right)^k P_v \Delta \lambda_v | s_v |^k \times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{v p_v} \right)^k \frac{1}{v^k} P_v \Delta \lambda_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_v p_n}{P_v} \right)^{k-1} \frac{p_n}{P_n P_{n-1}}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{v p_v} \right)^k \frac{1}{v^k} \Delta \lambda_v \left(\frac{\theta_v p_v}{P_v} \right)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \Delta \lambda_v
\]

\[
= O(1) \quad \text{as} \quad m \to \infty,
\]

in view of the hypotheses of the Theorem and Lemma 2.
Using the fact that $\Delta(P_v/p_v) = O(1/v)$ by Lemma 1, we have that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,3}|^k = \sum_{n=1}^{m} \theta_n^{k-1} \left(\frac{P_n}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}} \left| \sum_{v=1}^{n-1} P_v \lambda_{v+1} \Delta(P_v/p_v) s_v \right|^k$$

$$= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{P_n}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}} \left\{ \sum_{v=1}^{n-1} P_v \lambda_{v+1} \frac{1}{v} \right\}$$

$$= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{P_n}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{P^k_{n-1}} \right)^k p_v \lambda_{v+1} \frac{1}{v^k}$$

$$= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{P_n}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}}$$

by virtue of the hypotheses of the Theorem. Finally, we have that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_{n,4}|^k = \sum_{n=1}^{m} \theta_n^{k-1} (\lambda_n)^k \frac{1}{v^k}$$

$$= O(1) \sum_{n=1}^{m} \theta_n^{k-1} (\lambda_n)^k |s_n|^k \frac{1}{v^{k-1}} \frac{1}{n}$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{\theta_n P_n}{P^k_{n-1}} \right)^k \frac{1}{v^{k-1}} (\lambda_n)^k$$

$$= O(1) \text{ as } m \to \infty,$$

in view of the hypotheses of the Theorem. Therefore we get that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_{n,r}|^k = O(1) \text{ as } m \to \infty, \text{ for } r = 1, 2, 3, 4.$$

which completes the proof of the Lemma 3.

Remark. If we take $k = 1$, then we get a result due to Mishra [10].
4 Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighborhood of this point only, hence the truth of the Theorem is necessary consequence of Lemma 3.

References

HÜSEYİN BOR
Department of Mathematics,
Erciyes University,
38039 Kayseri, Turkey
e-mail: bor@erciyes.edu.tr