ALGEBRAICALLY PARANORMAL OPERATORS ON BANACH SPACES

PIETRO AIENA

Communicated by M. Abel

Abstract. In this paper we show that a bounded linear operator on a Banach space X is polaroid if and only if $p(T)$ is polaroid for some polynomial p. Consequently, algebraically paranormal operators defined on Banach spaces are hereditarily polaroid. Weyl type theorems are also established for perturbations $f(T + K)$, where T is algebraically paranormal, K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of $T + K$, such that f is nonconstant on each of the components of its domain. These results subsume recent results in this area.

1. Paranormal operators

There is a growing interest concerning paranormal operators, ([12, 14, 19, 7, 23]) and subclasses of paranormal operators ([17]), since the class of paranormal operators properly contains a relevant number of Hilbert space operators.

Paranormal operators are polaroid, where a bounded operator $T \in L(X)$ defined on a Banach space is said to be polaroid if every isolated point of the spectrum $\sigma(T)$ is a pole of the resolvent. Polaroid operators have been studied in recent papers in relation with Weyl type theorems, see [16, 15, 3, 6]. In this note we show that algebraically paranormal operators on Banach spaces are hereditarily polaroid, extending previous results known for Hilbert space operators. This is a consequence of the following more general result: $T \in L(X)$ is polaroid if and only if $f(T)$ is polaroid for some analytic function f (or equivalently, for some polynomial p), defined on an open neighborhood of $\sigma(T)$, such that f is nonconstant on each of the components of its domain. These results are, in the final
part, applied for obtaining Weyl type theorems for operators $f(T + K)$, where T is algebraically paranormal and K is an algebraic operator which commutes with T.

We introduce the relevant terminology. A bounded linear operator $T \in L(X)$, X an infinite dimensional complex Banach space, is said to be paranormal if

$$\|Tx\| \leq \|T^2x\| \|x\| \quad \text{for all } x \in X.$$

It is known that the property of being paranormal is not translation-invariant by scalars. The quasi-nilpotent part of an operator $T \in L(X)$ is the set

$$H_0(T) := \{x \in X : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0\}.$$

Clearly, $\ker T^n \subseteq H_0(T)$ for every $n \in \mathbb{N}$.

An operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0), if for every open disc U of λ_0, the only analytic function $f : U \to X$ which satisfies the equation $(\lambda I - T)f(\lambda) = 0$ for all $\lambda \in U$ is the function $f \equiv 0$.

An operator $T \in L(X)$ is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. Note that, that both T and its dual T^* (or in the case of Hilbert space operators, the adjoint T') have SVEP at every isolated point of the spectrum $\sigma(T) = \sigma(T^*)$. Furthermore, the SVEP is inherited by the restrictions to closed invariant subspaces, i.e. if $T \in L(X)$ has the SVEP at λ_0 and M is a closed T-invariant subspace then $T|_M$ has SVEP at λ_0.

The quasi-nilpotent part of an operator generally is not closed. We have

$$H_0(\lambda I - T) \text{ closed } \Rightarrow \ T \text{ has SVEP at } \lambda,$$ \hspace{1cm} (1.1)

see [5].

The following result is well-known, see [12, Corollary 2.10] and [7, p. 2445].

Theorem 1.1. Every paranormal operator on a separable Banach space has SVEP. Paranormal operators on Hilbert spaces have SVEP.

It is known that every paranormal operator $T \in L(X)$ is normaloid, i.e. $\|T\|$ is equal to the spectral radius of T. Consequently, if $T \in L(X)$

$$T \text{ quasi-nilpotent paranormal } \Rightarrow \ T = 0.$$ \hspace{1cm} (1.2)

An operator $T \in L(X)$ for which there exists a complex nonconstant polynomial h such that $h(T)$ is paranormal is said to be algebraically paranormal. Note that algebraic paranormality is preserved under translation by scalars and under restriction to closed invariant subspaces.

Two classical quantities associated with a linear operator T are the ascent $p := p(T)$, defined as the smallest non-negative integer p (if it does exist) such that $\ker T^p = \ker T^{p+1}$, and the descent $q := q(T)$, defined as the smallest non-negative integer q (if it does exists) such that $T^q(X) = T^{q+1}(X)$. It is well-known that if $p(\lambda I - T)$ and $q(\lambda I - T)$ are both finite then $p(\lambda I - T) = q(\lambda I - T)$ and λ is a pole of the the function resolvent $\lambda \to (\lambda I - T)^{-1}$, in particular an isolated
Suppose that T is nilpotent. Then from the spectral mapping theorem we have \[\tau(T) = \{0\}.\]

Lemma 1.2. Suppose that $T \in L(X)$ is algebraically paranormal and quasi-nilpotent. Then T is nilpotent.

Proof. Suppose that h is a polynomial for which $h(T)$ is paranormal. From the spectral mapping theorem we have
\[\sigma(h(T)) = h(\sigma(T)) = \{h(0)\}.\]

We claim that $h(T) = h(0)I$. To see that let us consider the two possibilities: $h(0) = 0$ or $h(0) \neq 0$.

If $h(0) = 0$ then $h(T)$ is quasi-nilpotent, so from the implication (1.2), we deduce that $h(T) = 0$, hence the equality $h(T) = h(0)I$ trivially holds.

Suppose the other case $h(0) \neq 0$, and set $h_1(T) := \frac{1}{h(0)} h(T)$. Clearly, $h_1(T)$ has spectrum $\{1\}$ and $\|h_1(T)\| = 1$. Moreover, $h_1(T)$ is invertible and also its inverse $h_1(T)^{-1}$ has norm 1. The operator $h_1(T)$ is then doubly power-bounded and by a classical theorem due to Gelfand, see [20, Theorem 1.5.14] for a proof, it then follows that $h_1(T) = I$, and hence $h(T) = h(0)I$, as claimed.

Now, from the equality $h(0)I - h(T) = 0$, we see that there exist some natural $n \in \mathbb{N}$ and $\mu \in \mathbb{C}$ for which
\[0 = h(0)I - h(T) = \mu T^n \prod_{i=1}^{n} (\lambda_i I - T)\]
with $\lambda_i \neq 0$,
where all $\lambda_i I - T$ are invertible. This obviously implies that $T^n = 0$, so T is nilpotent.

Recall first that if $T \in L(X)$, the analytic core $K(T)$ is the set of all $x \in X$ such that there exists a constant $c > 0$ and a sequence of elements $x_n \in X$ such that $x_0 = x, Tx_n = x_{n-1}$, and $\|x_n\| \leq c^n \|x\|$ for all $n \in \mathbb{N}$.

Theorem 1.3. If $T \in L(X)$ is algebraically paranormal then every isolated point of the spectrum $\sigma(T)$ is a pole of the resolvent; i.e. T is polaroid.

Proof. We show that for every isolated point λ of $\sigma(T)$ we have $p(\lambda I - T) = q(\lambda I - T) < \infty$. Let λ be an isolated point of $\sigma(T)$, and denote by P_λ denote the spectral projection associated with $\{\lambda\}$. Then $M := K(\lambda I - T) = \ker P_\lambda$ and $N := H_0(\lambda I - T) = P_\lambda(X)$, see [1, Theorem 3.74]. Therefore, $H = H_0(\lambda I - T) \oplus K(\lambda I - T)$. Furthermore, since $\sigma(T|N) = \{\lambda\}$, while $\sigma(T|M) = \sigma(T) \setminus \{\lambda\}$, so the restriction $\lambda I - T|N$ is quasi-nilpotent and $\lambda I - T|M$ is invertible. Since $\lambda I - T|N$ is algebraically paranormal then Lemma 1.2 implies that $\lambda I - T|N$ is nilpotent. In other worlds, $\lambda I - T$ is an operator of Kato Type, see [1, Chapter
1] for details.

Now, both T and its dual T^* have SVEP at λ, since λ is isolated in $\sigma(T) = \sigma(T^*)$, and this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both $p(\lambda I - T)$ and $q(\lambda I - T)$ are finite. Therefore, λ is a pole of the resolvent. \hfill \Box

The concept of Drazin invertibility has been introduced in a more abstract setting than operator theory. In the case of the Banach algebra $L(X)$, $T \in L(X)$ is said to be Drazin invertible (with a finite index) if and only if $p(T) = q(T) < \infty$.

Definition 1.4. $T \in L(X)$ is said to be left Drazin invertible if $p := p(T) < \infty$ and $T^{p+1}(X)$ is closed, while $T \in L(X)$ is said to be right Drazin invertible if $q := q(T) < \infty$ and $T^q(X)$ is closed.

Clearly, $T \in L(X)$ is both right and left Drazin invertible if and only if T is Drazin invertible. In fact, if $0 < p := p(T) = q(T)$ then $T^p(X) = T^{p+1}(X)$ is the kernel of the spectral projection associated with the spectral set $\{0\}$, see [18, Prop. 50.2].

The concepts of left or right Drazin invertibility lead to the concepts of left or right pole. Let us denote by $\sigma_a(T)$ the classical approximate point spectrum and by $\sigma_s(T)$ the surjectivity spectrum. It is well known that $\sigma_a(T^*) = \sigma_s(T)$ and $\sigma_a(T^*) = \sigma_a(T)$.

Definition 1.5. Let $T \in L(X)$, X a Banach space. If $\lambda I - T$ is left Drazin invertible and $\lambda \in \sigma_a(T)$ then λ is said to be a left pole of the resolvent of T. A left pole λ is said to have finite rank if $\alpha(\lambda I - T) < \infty$. If $\lambda I - T$ is right Drazin invertible and $\lambda \in \sigma_s(T)$ then λ is said to be a right pole of the resolvent of T. A right pole λ is said to have finite rank if $\beta(\lambda I - T) < \infty$.

Evidently, λ is a pole of T if and only if λ is both a left and a right pole of T. Moreover, λ is a pole of T if and only if λ is a pole of T'. In the case of Hilbert space operators, λ is a pole of T' if and only if $\bar{\lambda}$ is a pole of T^*.

Definition 1.6. Let $T \in L(X)$. Then

(i) T is said to be left polaroid if every isolated point of $\sigma_a(T)$ is a left pole of the resolvent of T.

(ii) $T \in L(X)$ is said to be right polaroid if every isolated point of $\sigma_s(T)$ is a right pole of the resolvent of T.

(iii) $T \in L(X)$ is said to be a-polaroid if every isolated point of $\sigma_a(T)$ is a pole of the resolvent of T.

Let $\text{iso} \sigma(T)$ denote the set of all isolated points of $\sigma(T)$. The condition of being polaroid may be characterized as follows:

Theorem 1.7. [6, Theorem 2.2] Suppose that $T \in L(X)$. Then we have:

(i) T is polaroid if and only if for every $\lambda \in \text{iso} \sigma(T)$, there exists $\nu := \nu(\lambda I - T) \in \mathbb{N}$ such that $H_0(\lambda I - T) = \ker (\lambda I - T)\nu$.

(ii) Suppose that T is left polaroid. Then, for every $\lambda \in \text{iso} \sigma_a(T)$, there exists $\nu := \nu(\lambda I - T) \in \mathbb{N}$ such that $H_0(\lambda I - T) = \ker (\lambda I - T)\nu$.
Note that the concepts of left and right polaroid are dual each other, see [3]. If \(T \in L(X) \) then the following implications hold:

\[
T \text{ a-polaroid } \Rightarrow T \text{ left polaroid } \Rightarrow T \text{ polaroid.}
\]

Furthermore, if \(T \) is right polaroid then \(T \) is polaroid. The first implication is clear, since a pole is always a left pole. Assume that \(T \) is left polaroid and let \(\lambda \in \sigma(T) \). It is known that the boundary of the spectrum is contained in \(\sigma_a(T) \), in particular every isolated point of \(\sigma(T) \), thus \(\lambda \in \sigma_a(T) \) and hence \(\lambda \) is a left pole of the resolvent of \(T \). By part (ii) of Theorem 1.7, then there exists a natural \(\nu := \nu(\lambda I - T) \in \mathbb{N} \) such that \(H_0(\lambda I - T) = \ker (\lambda I - T)^\nu \). But \(\lambda \) is isolated in \(\sigma(T) \), so \(T \) is polaroid, by part (i) of Theorem 1.7.

To show the last assertion suppose that \(T \) is right polaroid. Then \(T^* \) is left polaroid and hence, by the first part, \(T^* \) is polaroid, or equivalently \(T \) is polaroid.

2. Weyl type theorems for perturbations of paranormal operators

Recall that an operator \(T \in L(X) \) is said to be Weyl (\(T \in W(X) \)), if \(T \) is Fredholm (i.e. \(\alpha(T) := \dim \ker T \) and \(\beta(T) := \text{codim} T(X) \) are both finite) and the index \(\text{ind} T := \alpha(T) - \beta(T) = 0 \). The Weyl spectrum of \(T \in L(X) \) is defined by

\[
\sigma_w(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \notin W(X) \}.
\]

Following Coburn [13], we say that Weyl’s theorem holds for \(T \in L(X) \) if

\[
\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T), \tag{2.1}
\]

where

\[
\pi_{00}(T) := \{ \lambda \in \sigma(T) : 0 < \lambda \alpha(I - T) < \infty \}.
\]

The concept of Fredholm operators has been generalized by Berkani ([10]) in the following way: for every \(T \in L(X) \) and a nonnegative integer \(n \) let us denote by \(T_{[n]} \) the restriction of \(T \) to \(T_n(X) \) viewed as a map from the space \(T_n(X) \) into itself (we set \(T_{[0]} = T \)). \(T \in L(X) \) is said to be B-Fredholm if for some integer \(n \geq 0 \) the range \(T_n(X) \) is closed and \(T_{[n]} \) is a Fredholm operator. In this case \(T_{[n]} \) is a Fredholm operator for all \(m \geq n \) ([10]). This enables one to define the index of a Fredholm as \(\text{ind} T = \text{ind} T_{[n]} \). A bounded operator \(T \in L(X) \) is said to be B-Weyl (\(T \in BW(X) \)) if for some integer \(n \geq 0 \) \(T_n(X) \) is closed and \(T_{[n]} \) is Weyl. The B-Weyl spectrum \(\sigma_{bw}(T) \) is defined

\[
\sigma_{bw}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \notin BW(X) \}.
\]

Another version of Weyl’s theorem has been introduced by Berkani and Koliha ([11] as follows: \(T \in L(X) \) is said to verify generalized Weyl’s theorem, (abbreviated, \(gW \)), if

\[
\sigma(T) \setminus \sigma_{bw}(T) = E(T), \tag{2.2}
\]

where

\[
E(T) := \{ \lambda \in \sigma(T) : 0 < \alpha(I - T) \}.
\]

Note the generalized Weyl’s theorem entails Weyl’s theorem.
The following result shows that in presence of SVEP the polaroid condition entails Weyl’s type theorems.

Theorem 2.1. Let \(T \in L(X) \) be polaroid and suppose that either \(T \) or \(T^* \) has SVEP. Then both \(T \) and \(T^* \) satisfy generalized Weyl’s theorem.

Proof. If \(T \) is polaroid also \(T^* \) is polaroid, and Weyl’s theorem and generalized Weyl’s theorem for \(T \), or \(T^* \), are equivalent, see [3, Theorem 3.7]. The assertion then follows from [3, Theorem 3.3]. \(\square \)

As an immediate consequence of Theorem 2.1 we obtain that, for every algebraically paranormal operator \(T \) defined on a separable Banach space, or defined on a Hilbert space (in this case, the dual \(T^* \) may be replaced by the Hilbert adjoint \(T' \)), then both \(T \) and \(T^* \) satisfy generalized Weyl’s theorem. This result, for algebraically paranormal operators on Hilbert spaces, has been proved in [14].

It should be noted that if \(T \) is paranormal on a Banach space \(X \) then Weyl’s theorem holds for \(T \) and \(T^* \), without assuming separability on \(X \), see [12, Theorem 2.12].

Let \(H_{nc}(\sigma(T)) \) denote the set of all analytic functions, defined on an open neighborhood of \(\sigma(T) \), such that \(f \) is nonconstant on each of the components of its domain. Define, by the classical functional calculus, \(f(T) \) for every \(f \in H_{nc}(\sigma(T)) \).

The proof of the following results may be found in Lemma 1.76 and Lemma 3.101 of [1].

Lemma 2.2. Let \(\{\lambda_1, \ldots, \lambda_k\} \) be a finite subset of \(\mathbb{C} \), with \(\lambda_i \neq \lambda_j \) for \(i \neq j \). If \(\{\nu_1, \ldots, \nu_k\} \subset \mathbb{N} \) and \(p(\lambda) := \prod_{i=1}^k (\lambda_i - \lambda)^{\nu_i} \) then

\[
\ker p(T) = \bigoplus_{i=1}^k \ker (\lambda_i I - T)^{\nu_i}.
\]

Furthermore, if \(p(\lambda_0) \neq 0 \) for some \(\lambda_0 \in \mathbb{C} \) then \(H_0(\lambda_0 I - T) \cap \ker p(T) = \{0\} \).

Remark 2.3. It is easy to check from the definition of a quasi-nilpotent part the following properties:

(i) \(H_0(T) \subseteq H_0(T^k) \), for all \(k \in \mathbb{N} \).

(ii) If \(T, U \in L(X) \) commutes and \(S = TU \) then \(H_0(T) \subseteq H_0(S) \).

We are now ready for the main result of this section.

Theorem 2.4. For an operator \(T \in L(X) \) the following statements are equivalent.

(i) \(T \) is polaroid;

(ii) \(f(T) \) is polaroid for every \(f \in H_{nc}(\sigma(T)) \);

(iii) there exists a non-trivial polynomial \(p \) such that \(p(T) \) is polaroid;

(iv) there exists \(f \in H_{nc}(\sigma(T)) \) such that \(f(T) \) is polaroid.

Proof. The implication (i) \(\Rightarrow \) (ii) has been proved in [6, Theorem 2.5]. The implications (ii) \(\Rightarrow \) (iii) \(\Rightarrow \) (iv) are obvious.
(iv) \Rightarrow (i) Suppose $f(T)$ polaroid for some $f \in \mathcal{H}_{nc}(\sigma(T))$ and let $\lambda_0 \in \text{iso} \sigma(T)$ be arbitrary. Then $\mu_0 := f(\lambda_0) \in f(\text{iso} \sigma(T))$. It is easily seen that $\mu_0 \in \text{iso} f(\sigma(T))$. Indeed, suppose that μ_0 is not isolated in $f(\sigma(T))$. Then there exists a sequence $(\mu_n) \subset f(\sigma(T))$ of distinct scalars such that $\mu_n \to \mu_0$ as $n \to +\infty$. Let $\lambda_n \in \sigma(T)$ such that $\mu_n = f(\lambda_n)$ for all n. Clearly, $\lambda_n \neq \lambda_m$ for $n \neq m$, and since $\mu_n = f(\lambda_n) \to \mu_0 = p(\lambda_0)$ then $\lambda_n \to \lambda_0$, and this is impossible since, by assumption, $\lambda_0 \in \text{iso} \sigma(T)$. By the spectral mapping theorem then $\mu_0 \in \text{iso} \sigma(f(T))$. Now, since $f(T)$ is polaroid, the part (i) of Theorem 1.7 entails that there exists a natural ν such that

$$H_0(\mu I - f(T)) = \ker (\mu I - f(T))^\nu.$$ \hspace{1cm} (2.3)

Let $g(\lambda) := \mu_0 - f(\lambda)$. Trivially, λ_0 is a zero of g, and g may have only a finite number of zeros. Let $\{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ be the set of all zeros of g, with $\lambda_i \neq \lambda_j$, for all $i \neq j$. Define $p(\lambda) := \prod_{i=1}^n (\lambda - \lambda_i)^{\nu_i}$, where ν_i is the multiplicity of λ_i. Then we can write, for some $k \in \mathbb{N}$,

$$g(\lambda) = (\lambda_0 - \lambda)^k p(\lambda) h(\lambda),$$

where $h(\lambda)$ is an analytic function which does not vanish in $\sigma(T)$. Consequently,

$$g(T) = \mu_0 I - f(T) = (\lambda_0 I - T)^k p(T) h(T),$$

where $h(T)$ is invertible, and hence

$$H_0(\mu_0 I - f(T)) = H_0((\lambda_0 I - T)^k p(T) h(T)) = H_0((\lambda_0 I - T)^k p(T)).$$

By Remark 2.3, we then have

$$H_0(\lambda_0 I - T) \subseteq H_0((\lambda_0 I - T)^k) \subseteq H_0((\lambda_0 I - T)^k p(T))$$

$$= H_0(\mu_0 I - f(T)),$$

and, evidently,

$$\ker g(T) = \ker [(\lambda_0 I - T)^k p(T)].$$

By Lemma 2.2, we also have

$$\ker g(T) = \ker (\mu_0 I - f(T)) = \ker [(\lambda_0 I - T)^k \oplus \ker p(T)].$$

and hence, from (2.3),

$$H_0(\mu_0 I - f(T)) = \ker (\lambda_0 I - T)^{k\nu} \oplus \ker p(T)^k.$$

Therefore,

$$H_0(\lambda_0 I - T) \subseteq \ker (\lambda_0 I - T)^{k\nu} \oplus \ker p(T)^k.$$

Since, by Lemma 2.2, we have $H_0(\lambda_0 I - T) \cap \ker p(T)^k = \{0\}$, we then conclude that $H_0(\lambda_0 I - T) \subseteq \ker (\lambda_0 I - T)^{k\nu}$. The opposite of the latter inclusion also holds, so we have $H_0(\lambda_0 I - T) = \ker (\lambda_0 I - T)^{k\nu}$. Theorem 1.7 then entails that T is polaroid.

A natural question is if the analogous of Theorem 2.4 holds for left polaroid operators. The implication

$$T \text{ left polaroid } \Rightarrow f(T) \text{ left polaroid},$$

holds for every $f \in \mathcal{H}_{nc}(\sigma(T))$, see [3, Lemma 3.11]. Denote by $\mathcal{H}'_{nc}(\sigma(T))$ the subset of all $f \in \mathcal{H}_{nc}(\sigma(T))$ such that f is injective.
Theorem 2.5. For an operator \(T \in L(X) \) the following statements are equivalent.

(i) \(T \) is left polaroid;
(ii) \(f(T) \) is left polaroid for every \(f \in H_{nc}(\sigma(T)) \);
(iii) there exists \(f \in H_{nc}(\sigma(T)) \) such that \(f(T) \) is left polaroid.

Proof. We have only to show that (iii) \(\Rightarrow \) (i). Let \(\lambda_0 \) be an isolated point of \(\sigma_a(T) \) and let \(\mu_0 := f(\lambda_0) \). As in the proof of Theorem 2.4 it then follows that \(\mu_0 \in \text{iso}(\sigma_a(f(T))) \), so \(\mu_0 \) is a left pole of \(f(T) \). By Theorem 2.9 of [9] there exists a left pole \(\eta \) of \(T \) such that \(f(\eta) = \mu_0 \) and since \(f \) is injective then \(\eta = \lambda_0 \). Therefore, \(T \) is left polaroid. \(\square \)

A bounded operator \(T \in L(X) \) is said to be hereditarily polaroid, i.e. any restriction to an invariant closed subspace is polaroid. This class of operators has been first considered in [16]. Examples of hereditarily polaroid operators are \(H(p) \)-operators (i.e. operators on Banach spaces for which for every \(\lambda \in \mathbb{C} \) there exists a natural \(p := p(\lambda) \) such that \(H_0(\lambda I - T) = \ker(\lambda I - T^p) \). Property \(H(p) \) is satisfied by every generalized scalar operator, see [20] for details of this class of operators), and in particular for \(p \)-hyponormal, log-hyponormal or \(M \)-hyponormal operators on Hilbert spaces, see [21]. An example of polaroid operator which is not hereditarily polaroid may be found in [16, Example 2.6].

Corollary 2.6. Algebraically paranormal operators on Banach spaces are hereditarily polaroid.

Proof. Let \(T \in L(X) \) be algebraically paranormal and \(M \) a closed \(T \)-invariant subspace of \(X \). By assumption there exists a nontrivial polynomial \(h \) such that \(h(T) \) is paranormal. The restriction of any paranormal operator to an invariant closed subspace is also paranormal, so \(h(T|_M) = h(T)|_M \) is paranormal and hence polaroid, by Theorem 1.3. From Theorem 2.4 we then conclude that \(T|_M \) is polaroid. \(\square \)

Recall that a bounded operator \(K \in L(X) \) is said to be algebraic if there exists a non-constant polynomial \(h \) such that \(h(K) = 0 \). Trivially, every nilpotent operator is algebraic and it is well-known that if \(K^n(X) \) has finite dimension for some \(n \in \mathbb{N} \) then \(K \) is algebraic. In [4] it is shown that if \(T \) is hereditarily polaroid and has SVEP, and \(K \) is an algebraic operator which commutes with \(T \) then \(T + K \) is polaroid and \(T^* + K^* \) is \(a \)-polaroid.

Theorem 2.7. Let \(T \in L(X) \) be an algebraically paranormal operator on a separable Banach space \(X \), and let \(K \in L(X) \) be an algebraic operator commuting with \(T \). Then both \(f(T + K) \) and \(f(T^* + K^*) \) satisfies \((gW)\) for every \(f \in H_{nc}(\sigma(T + K)) \). An analogous result holds if \(T \) is an algebraically paranormal operator on a Hilbert space.

Proof. Suppose that \(T \in L(X) \) is algebraically paranormal operator, and let \(h \) be a non-trivial polynomial for which \(h(T) \) is paranormal, and hence has SVEP, since \(T \) has SVEP. From Theorem [1, Theorem 2.40] it the follows that also \(T \) has SVEP. Now, by Corollary 2.6 \(T \) is hereditarily polaroid. By Theorem 2.15
of [4] then $T + K$ is polaroid and $T^* + K^*$ is a-polaroid (and hence polaroid). By Theorem 2.4 then $f(T + K)$ is polaroid. Moreover, $T + K$ has SVEP, by [8, Theorem 2.14] and hence $f(T + K)$ has SVEP, again by [1, Theorem 2.40]. The assertions then follows by Theorem 2.1.

The last assertion is proved with the same argument, since T has SVEP. □

Theorem 2.7 considerably improves the results of Theorem 2.4 of [14] proved for algebraically paranormal operators defined on a separable Hilbert spaces H, and also improves Theorem 2.5 of [7], proved in the case of paranormal operators on Hilbert spaces. Observe that, always in the situation of Theorem 2.7, the fact that $f(T + K)$ is polaroid entails that all Weyl type theorems (as properties (gw) and (gaW)) hold for $f(T^* + K^*)$, see [3] for definitions and details, in particular Theorem 3.10.

References

Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy.

E-mail address: paiena@unipa.it